Introduction to Algorithms

Topic 2 : Asymptotic Mark and Recursive Equation

XiangYang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

g Li and Haisheng Tan Introduction to Algorithms



Outline

Outline of Topics

@ Asymptotic Notation: O-, Q- and @-otation
e O-otation
e Q-otation
e ®-otation
@ Other Asymptotic Notations
e Comparing Functions

© Standard Notations and Common Functions

© Recurrences
@ Substitution Method
@ Recursion Tree
o Master Method

-Yang Li and Haisheng Tan

Introduction to Algorithms



O-otation

. . - . Q-otati
Asymptotic Notation: O-, Q- and @-otation P ”' ‘( on
@-otation
Other Asymptotic Notations
Comparing Functions

Table of Contents

@ Asymptotic Notation: O-, Q- and @-otation
e O-otation

Q-otation

®-otation

Other Asymptotic Notations

Comparing Functions

isheng Tan Introduction to Algorithms



O-otation
) . . i ) . Q-otation
Asymptotic Notation: O-, Q- and @-otation .
®-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds

We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ny.

Li and heng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ny.

Example: 2n? = O(n?) (c=1,np=2)

ng Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 < f(n) < cg(n) for all n > ny.

Example: 2n? = O(n?) (c=1,np=2)

;

functions,
not values



Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ng.

Example: 2n? = (c=1,n9=2)
functions Hone -way” equality
not values

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



O-otation
) . . i ) . Q-otation
Asymptotic Notation: O-, Q- and @-otation .
®-otation
Other Asymptotic Notations
Comparing Functions

Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants ¢ > 0,ng > 0 such that
0 <f(n) <cg(n) for all n >ngp}.

g Li and Haisheng Tan Introduction to Algorithms



O-otation
) . . i ) . Q-otation
Asymptotic Notation: O-, Q- and @-otation .
®-otation
Other Asymptotic Notations
Comparing Functions

Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants ¢ > 0,ng > 0 such that
0 <f(n) <cg(n) for all n >ngp}.

Example: 2n% € O (n3)

g Li and Haisheng Tan Introduction to Algorithms



O-otation

Q-otation

®-otation

Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O-, Q- and @-otation

Macro Substitution

Convention: A set in a formula represents an anonymous
function in the set.

Example: f(n) =n®+ O (n?)
means
f(n) = n®+h(n)
for some h(n) € O (n?).

isheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: Q-notation

O-notation is an upper-bound notation.
The Q-notation provides a lower bound.

Set definition of Q-notation

Q(g(n)) = {f(n) : there exist constants ¢ > 0,n9 > 0 such that
0<c-g(n) <f(n) for all n > ng}

ng Li and Haisheng Tan

Introduction to Algorithms



O-otation

Q-otation

®-otation

Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O-, Q- and @-otation

Asymptotic Notation: Q-notation

O-notation is an upper-bound notation.
The Q-notation provides a lower bound.

Set definition of Q-notation

Q(g(n)) = {f(n) : there exist constants ¢ > 0,n9 > 0 such that
0<c-g(n) <f(n) for all n > ng}

Example: v/n=Q(Ign)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

©-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

O(g(n)) = O(g(n)) NQ(g(n))

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

©-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

Example: %nz —2n=0 (nz)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

©-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

Q
Example: %nz —2n=0 (nz)
)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that cog(n) > f(n) > c;g(n) > 0 for all

n > ng.
O(g(n)) = O(g(n)) N(g(n))
Example: %nz —2n=0 (nz)
®(n?) or O(1)

Theorem:




ymptotic Notation: O-, Q- and @-otation

O-otation

Q-otation

©®-otation

Other Asymptotic Notations
Comparing Functions

Graphic Examples of the ®,0,Q

c28(n) cg(n)
o) fn)
n

) f(n)

cig(n) cgn)
: n : n ; n
no no ; no

f(n) = 0(gn)) f(n) = 0(g(n)) f(n) = Q(g(n))

(a)

(b)

(©)




Asymptotic Notation: O-, Q- and @-otation

ymptotic Notations
Comparing Functions

Other Asymptotic Notations

o-notation

o(g(n)) = {f(n): for all ¢ > 0, there exist constants ng > 0 such
that 0 <f(n) < cg(n) for all n >nop}.
f(n)

gm) — 0.

Other equivalent definition ﬁ_r)n
n (o]

m-notation

o(g(n)) = {f(n): for all ¢ > 0, there exist constants ng > 0 such
that 0 < cg(n) < f(n) for all n >nop}.

Other equivalent definition lim o) R
n—soo g(n)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Asymptotic Notations
Comparing Functions

A Helpful Analogy

f(n) = O(g(n)) is similar to f(n) < g(n).
f(n) = o(g(n)) is similar to £(n) < g(n).
f(n) = O(g(n)) is similar to f(n) = g(n).
f(n) = Q(g(n)) is similar to f(n) > g(n).

f(n) = w(g(n)) is similar to f(n) > g(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Asymptotic Notation: O-, Q- and @-otation

Other Asymptotic Notations
Comparing Functions

Transitivity

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



O-otation

Q-otation

®-otation

Other Asymptotic Notations
Comparing Functions

Reflexivity




Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Symmetry & Transpose Symmetry

Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).
f(n) = o(g(n)) if and only if g(n) = w(f(n)).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



O-otation

Q-otation

®-otation

Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: O-, Q- and @-otation

Non-completeness

For real numbers a and b, we know that either a < b, or a=Db,
or a > b is true.

However, for two functions f(n) and g(n), it is possible that
neither of the following is true: f(n) = O(g(n)), or

f(n) = O(g(n)), or f(n) = Q(g(n)). For example, f(n) =n, and
g(n) — pl-sin(nm/2)

Li and heng Tan Introduction to Algorithms



Standard Notations and Common Functions

Table of Contents

© Standard Notations and Common Functions

Introduction to Algorithr



Standard Notations and Common Functions

Floors and Ceilings

For any real number x, we denote the greatest integer less than
or equal to x by x| (read “the floor of x”)

Ceiling
For any real number x, we denote the least integer greater than
or equal to x by [x]| (read “the ceiling of x”)

x—1<|x] <x<[x] <x+1.
For any integer n, [n/2]+ [n/2| =n.
For any real number x > 0 and integers a,b > 0,

[ = 1250, L) = L), 181 < 200, 13) = =6,

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Modular Arithmetic

For any integer a and any positive integer n, the value a mod n
is the remainder (or residue) of the quotient a/n:
a modn=a—nla/n]|.

Equivalent

If (a modn)= (b modn), we write (a=b) modn and say that
a is equivalent to b, modulo n.

ng Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Exponentials

Va>0, ad=1; (M) = (a)™ = a™n;  aMal =a™mtn

When a > 1, limy, . 2 = 0. That is, n® = o(am).

an
For all real x, ele—l—x—i—’;—?—l—’g—?—i—...:ﬂ’;o%
When |x| <1, 1+x<eX<14x+x2
When x — 0, e¥ = 1+x+0(x?)
For all x, limy (1 +2)" =e*

Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Logarithms

lgn=1log,n; Inn=log,n; Igkn=(Ign)¥; Iglgn=Ig(lgn)

For all real a,b,c > 0, and n,
a=Dhl°®2;  Jog.(ab)=log a+log,b;

log;, a™ = nlogy, a; log,, a = 12

@; aJlogb c_ Clogb a

b b
When a > 0, limy e 2o = limy e £ = 0. That is,

g
(Qa)lgn
1gPn = o(n?).

When [x| <1, ln(1+x)—x——+%—%+%_m

For x> —1, {75 <In(1+x) <x

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Factorials

n-(n—1)! if n>0
n! <n". A better bound:

n'—{l if n=0

Stirling’s approximation

n!=+27n(2)"(1+0(2))

Li and ng Tan Introduction to Algorithms



Standard Notations and Common Functions

Functional iteration

functional iteration

We use the notation f)(n) to denote the function f(n)
iteratively applied i times to an initial value of n. Formally, let
f(n) be a function over the reals. For non-negative integers i, we

recursively define

f(l) (n) _ n . lf 1= 0,
f(fi-Y(n)) ifi>0,

Example: if f(n) = 2n, then fV(n) = 2in.

-Yang Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

The iterated logarithm function

We use the notation Ig*n to denote the iterated logarithm.
lg"n =min{i > 0:1gWn <1}.

Example:
lg"2 =1,
lg"d =2,
1g"16 =3,

lg* (265536) —5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Fibonacci Numbers

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:
Fo =0,
F =1,
Fi = Fi_l +Fi_2, for i Z 2.

Each Fibonacci number is the sum of the two previous ones,
yielding the sequence
0,1,1,2,3,5,8,13,21,34,55,...

Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

Table of Contents

@ Recurrences
@ Substitution Method
@ Recursion Tree
o Master Method

isheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurrences W ® Weied

Solving Recurrences

Recurrences go hand in hand with the divide-and-conquer
paradigm. A recurrence is an equation or inequality that
describes a function in terms of its value on smaller inputs.
Three methods for solving recurrences

e substitution method: guess a bound and use mathematical
induction to prove the guess correct.

@ recursion-tree method: converts the recurrence into a tree
and use techniques for bounding summations.

@ master method: provides bounds of the form
T(n) =a-T(3)+f(n).

Li and ng Tan Introduction to Algorithms



Substitution Method

r Method
Recurrences

Substitution Method

The most

1. Guess the form of the solution.

2. Solve for constants.

o This method only works if we can guess the form of the
answer.

@ The method can be used to establish either upper or lower
bounds on a recurrence.

Li and heng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurrences e Nitsined

Example of Substitution

Example: T(n) =4T(n/2)+n
Assume that T(1) = ©(1).

Guess T(n) = O(n?®). (Note that if we guess ®, we need
prove O and Q separately.)

Assume that T(k) < ck? for k < n and some constant ¢ > 0.

(]

Prove T(n) < cn® by induction.

(]

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Re n Tree

)
Recurroncos Master Method

Example of Substitution

T(n) =4T(n/2)+n
<4c(n/2)3+n
= (¢/2)n®+n
=cn®—((¢/2)n® —n) ¢—— desired — residual
<cn® ———— desired

whenever (c/2)n? —n > 0, for example, if ¢ > 2 and n > 1.

\ residual

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

Example (Continued)

o We must also handle the initial conditions, that is, ground
the induction with base cases.

e Base: T(n) =0(1) for all n < ng, where ng is a suitable
constant.

e For 1 <n < ng, we have “©(1)” < cn?, if we pick c big
enough.

Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurroncos Master Method

Example (Continued)

o We must also handle the initial conditions, that is, ground
the induction with base cases.

e Base: T(n) =0(1) for all n < ng, where ng is a suitable
constant.

e For 1 <n < ng, we have “©(1)” < cn?, if we pick c big
enough.

This bound is not tight!

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).

isheng Tan Introduction to Algorithms



Recurrences

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T(k) < ck? for k<n:

T(n) =4T(n/2) +n
<4c(n/2)*+n
=cn’+n

= O(n?)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurrences e Nitsined

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T(k) < ck? for k<n:

T(n) =4T(n/2) +n
<4c(n/2)*+n

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurrences e Nitsined

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T (k) < ck® for k<n:

T(n) =4T(n/2)+n
<4c(n/2)?4n
= cn? +n
= Wrong! We must prove the I.H.
=cn? — (—n) [desired — residual]

< cn? for no choice of ¢ > 0. Lose!

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method

Recurrences

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

e Subtract a low-order term.
Inductive hypothesis: T (k) < c1k? —cok for k <n

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurroncos Master Method

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

e Subtract a low-order term.
Inductive hypothesis: T(k) < c1k? — cok for k <n
T(n) =4T(n/2) +n
<4(c1(n/2)%* —c2(n/2)) +n
= 01112 —2con+n
=c¢n? —con — (con—n)

< ClIl2—C2n if Co > 1

Pick c¢; big enough to handle the initial conditions.

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

A Tighter Lower Bound

We shall prove that T(n) = Q(n?).

isheng Tan Introduction to Algorithms



Sub "t'tutlon Method

ite]
Recurrences Wiasicr Milsilod

A Tighter Lower Bound

We shall prove that T(n) = Q(n?).

Assume that T (k) > ck? for k < n, and for some chosen constant
c.

T(n) =4T(n/2)+n
> 4c(n/2)? 4+n
= cn? +n

> cn?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Mas Method
Recurrences

Recursion-tree Method

@ A recursion tree models the costs (time) of a recursive
execution of an algorithm.

@ The recursion-tree method can be unreliable.

@ The recursion tree method is good for generating guesses
for the substitution method.

Li and ng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n%:

T(n)

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Recurroncos Master Method

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n%:

112
T/~ T2

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

T(n/16) T(n/8)  T(n/8)  T(n/4)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2
<n/4>i/ T g2y
/N
OAO W W /P



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

02 o 02
<n/4>i/ T w2y
/N
OAO W W /P



Substitution Method
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 e im i 112
WA T W2 5 2
N 7 N\
(/16 (/8) (/87 (/4



Substitution Method
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 o n2
A2 (/22 e 2n?
AN 7\
0167 /8 @/ (/4 e B
o)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 o n2
A2 (/22 e 2n?
AN 7\
0167 /8 @/ (/4 e B
o)

2 3
Total=n?(1+ &+ (%) + (&) +--) =0(n?)

(geometric series)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method

Recurrences

The Master Method

er method
The master method applies to recurrences of the form
n

T(n) = aT(b

) +f(n)

where a > 1, b > 1, and f is asymptotically positive.

Li and heng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Three Common Cases

Compare f(n) with n'°2»2:

1. f(n) = O (n'°&*~¢) for some constant & > 0

o f(n) grows polynomially slower than n'°#2 (by an n factor).
Solution: T(n) =0 (nl(’gba).

Li and heng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Three Common Cases

Compare f(n) with nlogpa;

1. f(n) = O (n'°&*~¢) for some constant & > 0

o f(n) grows polynomially slower than n'°#2 (by an n factor).
Solution: T(n) =0 (nl(’gba).

2. f(n) = @ (n'*#»21g"n) for some constant k > 0

o f(n) and n'e>21gkn grow at similar rates.
Solution: T(n) =@ (HIOgbalng n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method

Recurrences

Three Common Cases

logy,a.

Compare f(n) with n

3. f(n) = Q (n'°7#) for some constant € > 0.

o f(n) grows polynomially faster than n'°¢s2 (by an nf factor),
and f(n) satisfies the regularity condition that af(n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large n.

Solution: T(n) = O(f(n)).

ng-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
R ion Tree

Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n
a=4,b=2= nd =12 f(n) =n.
Case 1: f(n) =0 (n*7¢) for e =1
. T(n) = 0O (n?).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method

Recurrences

Examples

Ex. T(n) =4T(n/2)+n
a=4,b=2= nd =12 f(n) =n.
Case 1: f(n) =0 (n*7¢) for e =1
. T(n) = 0O (n?).

Ex. T(n) =4T(n/2) +n?
a=4,b=2= nl°d =n?; f(n) =n’
Case 2: f(n) = © (n%lg’n), that is, k=0.
. T(n) = O (nlgn).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree
Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n3
a=4,b=2 = n°®2 =n2;f(n) =n3.
Case 3: f(n) = Q (n*™®) for e =1
and 4(n/2)3 < cn®( reg. cond. ) for c =1/2.
. T(n) = 0O (n?).

Xiang-Yang Li and Haisheng Tan

Introduction to Algorithms



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n3
a=4,b=2 = n°®2 =n2;f(n) =n3.
Case 3: f(n) = Q (n*™®) for e =1
and 4(n/2)3 < cn®( reg. cond. ) for c =1/2.
. T(n) = 0O (n?).

Ex. T(n) =4T(n/2)+n?/lgn
a=4,b=2= n2 =12 f(n)=n?/lgn.
Master method does not apply. In particular, for every
constant € > 0, we have n® = w(lgn) .

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n)
P N
f(n/b) _ f(n/b) - f(n/b)
\ a
f(n/b?)  f(n/b?) - f(n/b?)



Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
X
f(n/b)\ f(n/b) -+ f(n/b) =v=rmimimim af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)



Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem




Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem




Substitution Method
Recursion Tree

Master Method

Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
P
togyn ffb) K/ (o) e af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
T(1 ): ---------- /#leaves =al ko nlogs aT(1)
¥ :alogbn

— plogna




Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
h=1log,n f(n/b) f(n/b) -+ f(n/b) =mimimmn af(n/b)
\ a
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
.’ 'CASE 1: The weight increases os armr.
\,T(l)'”" geometrically from the root to| = &2T(1)

the leaves. The leaves hold a con- @(nloz2)
stant fraction of the total weight.




Substitution Method
Recursion Tree

Master Method

Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
X
htogn Ko/ /) o la/b) e af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
° _|CASE 2: (k=0) The weight is | jog ar-
T (1 approximately the same on each ol L

of the logy n levels. O(n'°e21gn)




Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
h=logon fn/b) _ f@/b) wr Hu/b) -miminimem af(n/b)
\ a
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
.’ /CASE 3: The weight decreases os armr.
T(l "7 geometrically from the root tof o &2T(1)

the leaves. The root holds a con- O(f(n))
stant fraction of the total weight.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Appendix: Geometric Series

n+1

1—
1+x+x2+'~+xn=% for x#1
—x

1
l+x4+x24...=—— for |x|<1
—x

isheng Tan Introduction to Algorithms



	Outline
	Asymptotic Notation: notation
	notation
	notation
	notation
	Other Asymptotic Notations
	Comparing Functions

	Standard Notations and Common Functions
	Recurrences
	Substitution Method
	Recursion Tree
	Master Method


