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Asymptotic Notation: O—notation

O-notation: upper bounds

We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ny.
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Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ny.

Example: 2n? = O(n?) (c=1,np=2)
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Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 < f(n) < cg(n) for all n > ny.

Example: 2n? = O(n?) (c=1,np=2)

;
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Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: O—notation

O-notation: upper bounds
We write f(n) = O(g(n)) if there exist constants ¢ > 0,n9 > 0
such that 0 <f(n) < cg(n) for all n > ng.

Example: 2n? = (c=1,n9=2)
functions Hone -way” equality
not values
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Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants ¢ > 0,ng > 0 such that
0 <f(n) <cg(n) for all n >ngp}.
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Set Definition of O-notation

O(g(n)) = {f(n) : there exist constants ¢ > 0,ng > 0 such that
0 <f(n) <cg(n) for all n >ngp}.

Example: 2n% € O (n3)
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Asymptotic Notation: O-, Q- and @-otation

Macro Substitution

Convention: A set in a formula represents an anonymous
function in the set.

Example: f(n) =n®+ O (n?)
means
f(n) = n®+h(n)
for some h(n) € O (n?).
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Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Asymptotic Notation: Q-notation

O-notation is an upper-bound notation.
The Q-notation provides a lower bound.

Set definition of Q-notation

Q(g(n)) = {f(n) : there exist constants ¢ > 0,n9 > 0 such that
0<c-g(n) <f(n) for all n > ng}
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Asymptotic Notation: O-, Q- and @-otation

Asymptotic Notation: Q-notation

O-notation is an upper-bound notation.
The Q-notation provides a lower bound.

Set definition of Q-notation

Q(g(n)) = {f(n) : there exist constants ¢ > 0,n9 > 0 such that
0<c-g(n) <f(n) for all n > ng}

Example: v/n=Q(Ign)
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Asymptotic Notation: O-, Q- and @-otation

©-otation
Other Asymptotic Notations
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Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

O(g(n)) = O(g(n)) NQ(g(n))
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Asymptotic Notation: O-, Q- and @-otation

©-otation
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Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

Example: %nz —2n=0 (nz)
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Asymptotic Notation: O-, Q- and @-otation

©-otation
Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c9 > 0,n9 > 0 such that ceg(n) > f(n) > cig(n) > 0 for all
n > ng.

Q
Example: %nz —2n=0 (nz)
)
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Asymptotic Notation: O-, Q- and @-otation

Other Asymptotic Notations
Comparing Functions

Asymptotic Notation: ®-notation

®-notation: tight bounds

We write f(n) = ©(g(n)) if there exist constants
c1 > 0,c2 > 0,n0 > 0 such that cog(n) > f(n) > c;g(n) > 0 for all

n > ng.
O(g(n)) = O(g(n)) N(g(n))
Example: %nz —2n=0 (nz)
®(n?) or O(1)

Theorem:
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O-otation
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Other Asymptotic Notations
Comparing Functions

Graphic Examples of the ®,0,Q
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Asymptotic Notation: O-, Q- and @-otation

ymptotic Notations
Comparing Functions

Other Asymptotic Notations

o-notation

o(g(n)) = {f(n): for all ¢ > 0, there exist constants ng > 0 such
that 0 <f(n) < cg(n) for all n >nop}.
f(n)

gm) — 0.

Other equivalent definition ﬁ_r)n
n (o]

m-notation

o(g(n)) = {f(n): for all ¢ > 0, there exist constants ng > 0 such
that 0 < cg(n) < f(n) for all n >nop}.

Other equivalent definition lim o) R
n—soo g(n)
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Asymptotic Notation: O-, Q- and @-otation

Asymptotic Notations
Comparing Functions

A Helpful Analogy

f(n) = O(g(n)) is similar to f(n) < g(n).
f(n) = o(g(n)) is similar to £(n) < g(n).
f(n) = O(g(n)) is similar to f(n) = g(n).
f(n) = Q(g(n)) is similar to f(n) > g(n).

f(n) = w(g(n)) is similar to f(n) > g(n).
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Asymptotic Notation: O-, Q- and @-otation

Other Asymptotic Notations
Comparing Functions

Transitivity
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Asymptotic Notation: O-, Q- and @-otation

Comparing Functions

Symmetry & Transpose Symmetry

Transpose Symmetry
f(n) = O(g(n)) if and only if g(n) = Q(f(n)).
f(n) = o(g(n)) if and only if g(n) = w(f(n)).
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®-otation
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Asymptotic Notation: O-, Q- and @-otation

Non-completeness

For real numbers a and b, we know that either a < b, or a=Db,
or a > b is true.

However, for two functions f(n) and g(n), it is possible that
neither of the following is true: f(n) = O(g(n)), or

f(n) = O(g(n)), or f(n) = Q(g(n)). For example, f(n) =n, and
g(n) — pl-sin(nm/2)
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Standard Notations and Common Functions

Floors and Ceilings

For any real number x, we denote the greatest integer less than
or equal to x by x| (read “the floor of x”)

Ceiling
For any real number x, we denote the least integer greater than
or equal to x by [x]| (read “the ceiling of x”)

x—1<|x] <x<[x] <x+1.
For any integer n, [n/2]+ [n/2| =n.
For any real number x > 0 and integers a,b > 0,

[ = 1250, L) = L), 181 < 200, 13) = =6,
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Standard Notations and Common Functions

Modular Arithmetic

For any integer a and any positive integer n, the value a mod n
is the remainder (or residue) of the quotient a/n:
a modn=a—nla/n]|.

Equivalent

If (a modn)= (b modn), we write (a=b) modn and say that
a is equivalent to b, modulo n.

ng Li and Haisheng Tan Introduction to Algorithms



Standard Notations and Common Functions

Exponentials

Va>0, ad=1; (M) = (a)™ = a™n;  aMal =a™mtn

When a > 1, limy, . 2 = 0. That is, n® = o(am).

an
For all real x, ele—l—x—i—’;—?—l—’g—?—i—...:ﬂ’;o%
When |x| <1, 1+x<eX<14x+x2
When x — 0, e¥ = 1+x+0(x?)
For all x, limy (1 +2)" =e*
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Standard Notations and Common Functions

Logarithms

lgn=1log,n; Inn=log,n; Igkn=(Ign)¥; Iglgn=Ig(lgn)

For all real a,b,c > 0, and n,
a=Dhl°®2;  Jog.(ab)=log a+log,b;

log;, a™ = nlogy, a; log,, a = 12

@; aJlogb c_ Clogb a

b b
When a > 0, limy e 2o = limy e £ = 0. That is,

g
(Qa)lgn
1gPn = o(n?).

When [x| <1, ln(1+x)—x——+%—%+%_m

For x> —1, {75 <In(1+x) <x
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Standard Notations and Common Functions

Factorials

n-(n—1)! if n>0
n! <n". A better bound:

n'—{l if n=0

Stirling’s approximation

n!=+27n(2)"(1+0(2))
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Standard Notations and Common Functions

Functional iteration

functional iteration

We use the notation f)(n) to denote the function f(n)
iteratively applied i times to an initial value of n. Formally, let
f(n) be a function over the reals. For non-negative integers i, we

recursively define

f(l) (n) _ n . lf 1= 0,
f(fi-Y(n)) ifi>0,

Example: if f(n) = 2n, then fV(n) = 2in.
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Standard Notations and Common Functions

The iterated logarithm function

We use the notation Ig*n to denote the iterated logarithm.
lg"n =min{i > 0:1gWn <1}.

Example:
lg"2 =1,
lg"d =2,
1g"16 =3,

lg* (265536) —5.
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Standard Notations and Common Functions

Fibonacci Numbers

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:
Fo =0,
F =1,
Fi = Fi_l +Fi_2, for i Z 2.

Each Fibonacci number is the sum of the two previous ones,
yielding the sequence
0,1,1,2,3,5,8,13,21,34,55,...
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Substitution Method
Recursion Tree

Recurrences W ® Weied

Solving Recurrences

Recurrences go hand in hand with the divide-and-conquer
paradigm. A recurrence is an equation or inequality that
describes a function in terms of its value on smaller inputs.
Three methods for solving recurrences

e substitution method: guess a bound and use mathematical
induction to prove the guess correct.

@ recursion-tree method: converts the recurrence into a tree
and use techniques for bounding summations.

@ master method: provides bounds of the form
T(n) =a-T(3)+f(n).
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Substitution Method

r Method
Recurrences

Substitution Method

The most

1. Guess the form of the solution.

2. Solve for constants.

o This method only works if we can guess the form of the
answer.

@ The method can be used to establish either upper or lower
bounds on a recurrence.
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Substitution Method
I sion Tree

Recurrences e Nitsined

Example of Substitution

Example: T(n) =4T(n/2)+n
Assume that T(1) = ©(1).

Guess T(n) = O(n?®). (Note that if we guess ®, we need
prove O and Q separately.)

Assume that T(k) < ck? for k < n and some constant ¢ > 0.

(]

Prove T(n) < cn® by induction.

(]

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Re n Tree

)
Recurroncos Master Method

Example of Substitution

T(n) =4T(n/2)+n
<4c(n/2)3+n
= (¢/2)n®+n
=cn®—((¢/2)n® —n) ¢—— desired — residual
<cn® ———— desired

whenever (c/2)n? —n > 0, for example, if ¢ > 2 and n > 1.

\ residual

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

Example (Continued)

o We must also handle the initial conditions, that is, ground
the induction with base cases.

e Base: T(n) =0(1) for all n < ng, where ng is a suitable
constant.

e For 1 <n < ng, we have “©(1)” < cn?, if we pick c big
enough.

Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurroncos Master Method

Example (Continued)

o We must also handle the initial conditions, that is, ground
the induction with base cases.

e Base: T(n) =0(1) for all n < ng, where ng is a suitable
constant.

e For 1 <n < ng, we have “©(1)” < cn?, if we pick c big
enough.

This bound is not tight!

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
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Recurrences

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T(k) < ck? for k<n:

T(n) =4T(n/2) +n
<4c(n/2)*+n
=cn’+n

= O(n?)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurrences e Nitsined

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T(k) < ck? for k<n:

T(n) =4T(n/2) +n
<4c(n/2)*+n

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurrences e Nitsined

A Tighter Upper Bound?

We shall prove that T(n) = O(n?).
Assume that T (k) < ck® for k<n:

T(n) =4T(n/2)+n
<4c(n/2)?4n
= cn? +n
= Wrong! We must prove the I.H.
=cn? — (—n) [desired — residual]

< cn? for no choice of ¢ > 0. Lose!

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method

Recurrences

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

e Subtract a low-order term.
Inductive hypothesis: T (k) < c1k? —cok for k <n

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
I sion Tree

Recurroncos Master Method

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

e Subtract a low-order term.
Inductive hypothesis: T(k) < c1k? — cok for k <n
T(n) =4T(n/2) +n
<4(c1(n/2)%* —c2(n/2)) +n
= 01112 —2con+n
=c¢n? —con — (con—n)

< ClIl2—C2n if Co > 1

Pick c¢; big enough to handle the initial conditions.

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Recurroncos Master Method

A Tighter Lower Bound

We shall prove that T(n) = Q(n?).

isheng Tan Introduction to Algorithms



Sub "t'tutlon Method

ite]
Recurrences Wiasicr Milsilod

A Tighter Lower Bound

We shall prove that T(n) = Q(n?).

Assume that T (k) > ck? for k < n, and for some chosen constant
c.

T(n) =4T(n/2)+n
> 4c(n/2)? 4+n
= cn? +n

> cn?
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Substitution Method
Recursion Tree

Mas Method
Recurrences

Recursion-tree Method

@ A recursion tree models the costs (time) of a recursive
execution of an algorithm.

@ The recursion-tree method can be unreliable.

@ The recursion tree method is good for generating guesses
for the substitution method.
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Substitution Method
Recursion Tree

Recurroncos Master Method

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n%:

T(n)

-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Recurroncos Master Method

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n%:

112
T/~ T2
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Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

T(n/16) T(n/8)  T(n/8)  T(n/4)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2
<n/4>i/ T g2y
/N
OAO W W /P



Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

02 o 02
<n/4>i/ T w2y
/N
OAO W W /P



Substitution Method
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 e im i 112
WA T W2 5 2
N 7 N\
(/16 (/8) (/87 (/4



Substitution Method
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 o n2
A2 (/22 e 2n?
AN 7\
0167 /8 @/ (/4 e B
o)
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Substitution Methoc
Recursion Tree

Master Method
Recurrences

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) +n:

n2 o n2
A2 (/22 e 2n?
AN 7\
0167 /8 @/ (/4 e B
o)

2 3
Total=n?(1+ &+ (%) + (&) +--) =0(n?)

(geometric series)
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Substitution Method
Recursion Tree

Master Method

Recurrences

The Master Method

er method
The master method applies to recurrences of the form
n

T(n) = aT(b

) +f(n)

where a > 1, b > 1, and f is asymptotically positive.
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Substitution Method
Recursion Tree

Master Method
Recurrences

Three Common Cases

Compare f(n) with n'°2»2:

1. f(n) = O (n'°&*~¢) for some constant & > 0

o f(n) grows polynomially slower than n'°#2 (by an n factor).
Solution: T(n) =0 (nl(’gba).

Li and heng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Three Common Cases

Compare f(n) with nlogpa;

1. f(n) = O (n'°&*~¢) for some constant & > 0

o f(n) grows polynomially slower than n'°#2 (by an n factor).
Solution: T(n) =0 (nl(’gba).

2. f(n) = @ (n'*#»21g"n) for some constant k > 0

o f(n) and n'e>21gkn grow at similar rates.
Solution: T(n) =@ (HIOgbalng n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method

Recurrences

Three Common Cases

logy,a.

Compare f(n) with n

3. f(n) = Q (n'°7#) for some constant € > 0.

o f(n) grows polynomially faster than n'°¢s2 (by an nf factor),
and f(n) satisfies the regularity condition that af(n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large n.

Solution: T(n) = O(f(n)).

ng-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
R ion Tree

Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n
a=4,b=2= nd =12 f(n) =n.
Case 1: f(n) =0 (n*7¢) for e =1
. T(n) = 0O (n?).
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Substitution Method
Recursion Tree

Master Method

Recurrences

Examples

Ex. T(n) =4T(n/2)+n
a=4,b=2= nd =12 f(n) =n.
Case 1: f(n) =0 (n*7¢) for e =1
. T(n) = 0O (n?).

Ex. T(n) =4T(n/2) +n?
a=4,b=2= nl°d =n?; f(n) =n’
Case 2: f(n) = © (n%lg’n), that is, k=0.
. T(n) = O (nlgn).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Methoc
Recursion Tree
Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n3
a=4,b=2 = n°®2 =n2;f(n) =n3.
Case 3: f(n) = Q (n*™®) for e =1
and 4(n/2)3 < cn®( reg. cond. ) for c =1/2.
. T(n) = 0O (n?).

Xiang-Yang Li and Haisheng Tan
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Substitution Methoc
Recursion Tree

Master Method
Recurrences

Examples

Ex. T(n) =4T(n/2)+n3
a=4,b=2 = n°®2 =n2;f(n) =n3.
Case 3: f(n) = Q (n*™®) for e =1
and 4(n/2)3 < cn®( reg. cond. ) for c =1/2.
. T(n) = 0O (n?).

Ex. T(n) =4T(n/2)+n?/lgn
a=4,b=2= n2 =12 f(n)=n?/lgn.
Master method does not apply. In particular, for every
constant € > 0, we have n® = w(lgn) .
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Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n)
P N
f(n/b) _ f(n/b) - f(n/b)
\ a
f(n/b?)  f(n/b?) - f(n/b?)



Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem

T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
X
f(n/b)\ f(n/b) -+ f(n/b) =v=rmimimim af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)



Substitution Method
Recursion Tree

Master Method
Recurrences

Idea of Master Theorem
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Idea of Master Theorem
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T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
P
togyn ffb) K/ (o) e af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
T(1 ): ---------- /#leaves =al ko nlogs aT(1)
¥ :alogbn

— plogna
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T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
h=1log,n f(n/b) f(n/b) -+ f(n/b) =mimimmn af(n/b)
\ a
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
.’ 'CASE 1: The weight increases os armr.
\,T(l)'”" geometrically from the root to| = &2T(1)

the leaves. The leaves hold a con- @(nloz2)
stant fraction of the total weight.
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T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
X
htogn Ko/ /) o la/b) e af(n/b)
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
° _|CASE 2: (k=0) The weight is | jog ar-
T (1 approximately the same on each ol L

of the logy n levels. O(n'°e21gn)
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T(n) = aT(3) +f(n). Recursion tree:

f(n) == f(n)
h=logon fn/b) _ f@/b) wr Hu/b) -miminimem af(n/b)
\ a
f(n/b?) f(n/b2) --+ f(n/b2) =r=rmmimi a%f(n/b?)
.’ /CASE 3: The weight decreases os armr.
T(l "7 geometrically from the root tof o &2T(1)

the leaves. The root holds a con- O(f(n))
stant fraction of the total weight.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Substitution Method
Recursion Tree

Master Method
Recurrences

Appendix: Geometric Series

n+1

1—
1+x+x2+'~+xn=% for x#1
—x

1
l+x4+x24...=—— for |x|<1
—x

isheng Tan Introduction to Algorithms
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