

Introduction to Algorithms

Topic 2 : Asymptotic Mark and Recursive Equation

XiangYang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

Outline of Topics

1 Asymptotic Notation: O-, Ω - and Θ -otation

- O-otation
- Ω -otation
- Θ -otation
- Other Asymptotic Notations
- Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences

- Substitution Method
- Recursion Tree
- Master Method

Table of Contents

1 Asymptotic Notation: O-, Ω - and Θ -otation

- O-otation
- Ω -otation
- Θ -otation
- Other Asymptotic Notations
- Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences

- Substitution Method
- Recursion Tree
- Master Method

Asymptotic Notation: O-notation

O-notation: upper bounds

We write $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Asymptotic Notation: O-notation

O-notation: upper bounds

We write $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

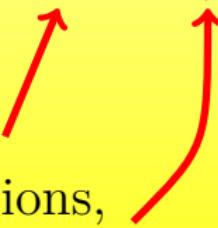
Example: $2n^2 = O(n^3)$ ($c = 1, n_0 = 2$)

Asymptotic Notation: O-notation

O-notation: upper bounds

We write $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$ ($c = 1, n_0 = 2$)



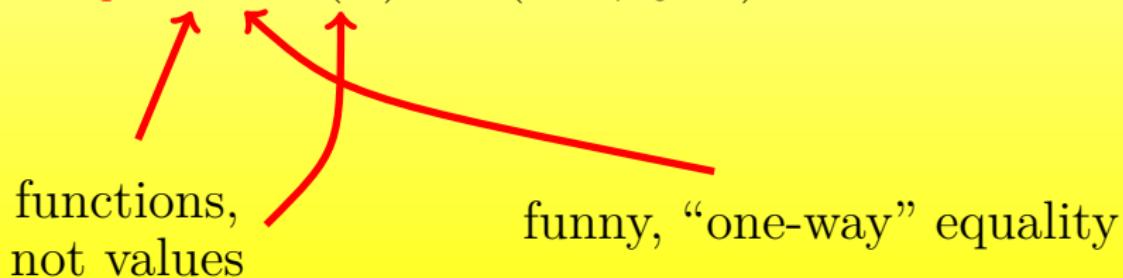
functions,
not values

Asymptotic Notation: O-notation

O-notation: upper bounds

We write $f(n) = O(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \leq f(n) \leq cg(n)$ for all $n \geq n_0$.

Example: $2n^2 = O(n^3)$ $(c = 1, n_0 = 2)$



Set Definition of O-notation

$O(g(n)) = \{f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that}$
 $0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0\}.$

Set Definition of O-notation

$O(g(n)) = \{f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that}$
 $0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0\}.$

Example: $2n^2 \in O(n^3)$

Macro Substitution

Convention: A set in a formula represents an anonymous function in the set.

Example: $f(n) = n^3 + O(n^2)$

means

$$f(n) = n^3 + h(n)$$

for some $h(n) \in O(n^2)$.

Asymptotic Notation: Ω -notation

O-notation is an upper-bound notation.

The Ω -notation provides a lower bound.

Set definition of Ω -notation

$\Omega(g(n)) = \{f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that}$

$$0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0\}$$

Asymptotic Notation: Ω -notation

O-notation is an upper-bound notation.
The Ω -notation provides a lower bound.

Set definition of Ω -notation

$\Omega(g(n)) = \{f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that}$
 $0 \leq c \cdot g(n) \leq f(n) \text{ for all } n \geq n_0\}$

Example:

$$\sqrt{n} = \Omega(\lg n)$$

Asymptotic Notation: Θ -notation

Θ -notation: tight bounds

We write $f(n) = \Theta(g(n))$ if there exist constants

$c_1 > 0, c_2 > 0, n_0 > 0$ such that $c_2g(n) \geq f(n) \geq c_1g(n) \geq 0$ for all $n \geq n_0$.

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Asymptotic Notation: Θ -notation

Θ -notation: tight bounds

We write $f(n) = \Theta(g(n))$ if there exist constants

$c_1 > 0, c_2 > 0, n_0 > 0$ such that $c_2g(n) \geq f(n) \geq c_1g(n) \geq 0$ for all $n \geq n_0$.

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Example:

$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

Asymptotic Notation: Θ -notation

Θ -notation: tight bounds

We write $f(n) = \Theta(g(n))$ if there exist constants

$c_1 > 0, c_2 > 0, n_0 > 0$ such that $c_2g(n) \geq f(n) \geq c_1g(n) \geq 0$ for all $n \geq n_0$.

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Example:

$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$
$$\Theta(n^0) \text{ or } \Theta(1)$$

Asymptotic Notation: Θ -notation

Θ -notation: tight bounds

We write $f(n) = \Theta(g(n))$ if there exist constants

$c_1 > 0, c_2 > 0, n_0 > 0$ such that $c_2g(n) \geq f(n) \geq c_1g(n) \geq 0$ for all $n \geq n_0$.

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Example:

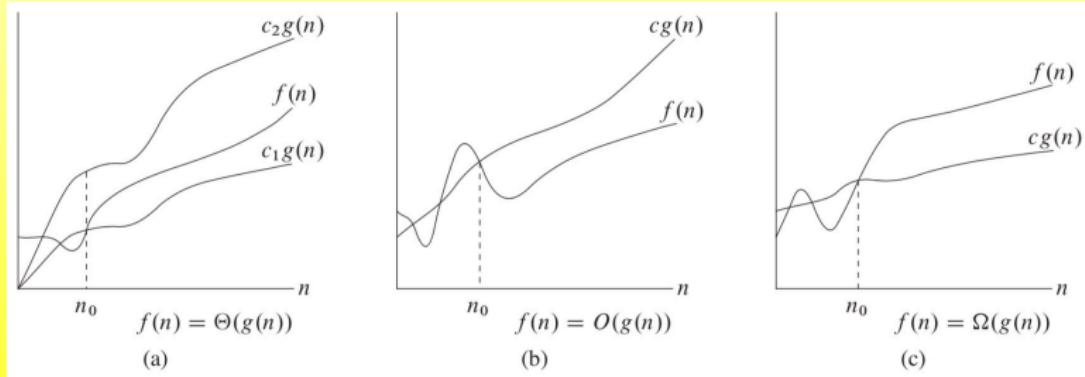
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

$$\Theta(n^0) \text{ or } \Theta(1)$$

Theorem:

The leading constant and low order terms do not matter.

Graphic Examples of the Θ , O, Ω



Other Asymptotic Notations

o -notation

$o(g(n)) = \{f(n): \text{for all } c > 0, \text{ there exist constants } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0\}.$

Other equivalent definition $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = 0$.

ω -notation

$\omega(g(n)) = \{f(n): \text{for all } c > 0, \text{ there exist constants } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0\}.$

Other equivalent definition $\lim_{n \rightarrow \infty} \frac{f(n)}{g(n)} = \infty$

A Helpful Analogy

$f(n) = O(g(n))$ is similar to $f(n) \leq g(n)$.

$f(n) = o(g(n))$ is similar to $f(n) < g(n)$.

$f(n) = \Theta(g(n))$ is similar to $f(n) = g(n)$.

$f(n) = \Omega(g(n))$ is similar to $f(n) \geq g(n)$.

$f(n) = \omega(g(n))$ is similar to $f(n) > g(n)$.

Transitivity

$f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$.

$f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$.

$f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$.

$f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$.

$f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity

$$f(n) = \Theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Symmetry & Transpose Symmetry

Symmetry

$f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.

Transpose Symmetry

$f(n) = O(g(n))$ if and only if $g(n) = \Omega(f(n))$.

$f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Non-completeness

Non-completeness of O, Ω , and Θ notations

For real numbers a and b , we know that either $a < b$, or $a = b$, or $a > b$ is true.

However, for two functions $f(n)$ and $g(n)$, it is possible that neither of the following is true: $f(n) = O(g(n))$, or $f(n) = \Theta(g(n))$, or $f(n) = \Omega(g(n))$. For example, $f(n) = n$, and $g(n) = n^{1-\sin(n\pi/2)}$.

Table of Contents

1 Asymptotic Notation: O-, Ω - and Θ -otation

- O-otation
- Ω -otation
- Θ -otation
- Other Asymptotic Notations
- Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences

- Substitution Method
- Recursion Tree
- Master Method

Floors and Ceilings

Floor

For any real number x , we denote the greatest integer less than or equal to x by $\lfloor x \rfloor$ (read “the floor of x ”)

Ceiling

For any real number x , we denote the least integer greater than or equal to x by $\lceil x \rceil$ (read “the ceiling of x ”)

$$x - 1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil \leq x + 1.$$

For any integer n , $\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$.

For any real number $x \geq 0$ and integers $a, b > 0$,

$$\lceil \frac{\lfloor x/a \rfloor}{b} \rceil = \lceil \frac{x}{ab} \rceil, \lfloor \frac{\lfloor x/a \rfloor}{b} \rfloor = \lfloor \frac{x}{ab} \rfloor, \lceil \frac{a}{b} \rceil \leq \frac{a+(b-1)}{b}, \lfloor \frac{a}{b} \rfloor \geq \frac{a-(b-1)}{b},$$

Modular Arithmetic

Mod

For any integer a and any positive integer n , the value $a \bmod n$ is the **remainder (or residue)** of the quotient a/n :

$$a \bmod n = a - n \lfloor a/n \rfloor.$$

Equivalent

If $(a \bmod n) = (b \bmod n)$, we write $(a \equiv b) \bmod n$ and say that a is **equivalent** to b , modulo n .

Exponentials

$$\forall a > 0, \quad a^0 = 1; \quad (a^m)^n = (a^n)^m = a^{mn}; \quad a^m a^n = a^{m+n}$$

When $a > 1$, $\lim_{n \rightarrow \infty} \frac{n^b}{a^n} = 0$. That is, $n^b = o(a^n)$.

For all real x , $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$

When $|x| \leq 1$, $1 + x \leq e^x \leq 1 + x + x^2$

When $x \rightarrow 0$, $e^x = 1 + x + \Theta(x^2)$

For all x , $\lim_{n \rightarrow \infty} (1 + \frac{x}{n})^n = e^x$

Logarithms

$$\lg n = \log_2 n; \quad \ln n = \log_e n; \quad \lg^k n = (\lg n)^k; \quad \lg \lg n = \lg(\lg n)$$

For all real $a, b, c > 0$, and n ,

$$a = b^{\log_b a}; \quad \log_c(ab) = \log_c a + \log_c b;$$

$$\log_b a^n = n \log_b a; \quad \log_b a = \frac{\lg a}{\lg b}; \quad a^{\log_b c} = c^{\log_b a}$$

When $a > 0$, $\lim_{n \rightarrow \infty} \frac{\lg^b n}{(2^a)^{\lg n}} = \lim_{n \rightarrow \infty} \frac{\lg^b n}{n^a} = 0$. That is,
 $\lg^b n = o(n^a)$.

When $|x| \leq 1$, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$

For $x > -1$, $\frac{x}{1+x} \leq \ln(1+x) \leq x$

Factorials

$$n! = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

$n! \leq n^n$. A better bound:

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

Functional iteration

functional iteration

We use the notation $f^{(i)}(n)$ to denote the function $f(n)$ iteratively applied i times to an initial value of n . Formally, let $f(n)$ be a function over the reals. For non-negative integers i , we recursively define

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0, \\ f(f^{(i-1)}(n)) & \text{if } i > 0, \end{cases}$$

Example: if $f(n) = 2n$, then $f^{(i)}(n) = 2^i n$.

The iterated logarithm function

We use the notation $\lg^* n$ to denote the iterated logarithm.

$$\lg^* n = \min\{i \geq 0 : \lg^{(i)} n \leq 1\}.$$

Example:

$$\lg^* 2 = 1,$$

$$\lg^* 4 = 2,$$

$$\lg^* 16 = 3,$$

$$\lg^*(2^{65536}) = 5.$$

Fibonacci Numbers

Fibonacci numbers

We define the **Fibonacci numbers** by the following recurrence:

$$\begin{aligned}F_0 &= 0, \\F_1 &= 1, \\F_i &= F_{i-1} + F_{i-2}, \quad \text{for } i \geq 2.\end{aligned}$$

Each Fibonacci number is the sum of the two previous ones, yielding the sequence

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

Table of Contents

1 Asymptotic Notation: O-, Ω - and Θ -otation

- O-otation
- Ω -otation
- Θ -otation
- Other Asymptotic Notations
- Comparing Functions

2 Standard Notations and Common Functions

3 Recurrences

- Substitution Method
- Recursion Tree
- Master Method

Solving Recurrences

Recurrences go hand in hand with the divide-and-conquer paradigm. A **recurrence** is an equation or inequality that describes a function in terms of its value on smaller inputs.

Three methods for solving recurrences

- **substitution method:** guess a bound and use mathematical induction to prove the guess correct.
- **recursion-tree method:** converts the recurrence into a tree and use techniques for bounding summations.
- **master method:** provides bounds of the form $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$.

Substitution Method

The most general method

1. **Guess** the form of the solution.
2. **Solve** for constants.

- This method only works if we can guess the form of the answer.
- The method can be used to establish either upper or lower bounds on a recurrence.

Example of Substitution

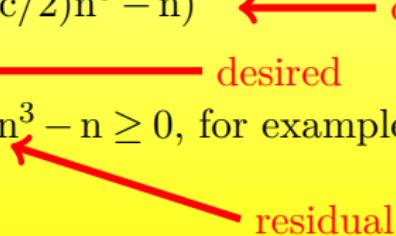
Example: $T(n) = 4T(n/2) + n$

- Assume that $T(1) = \Theta(1)$.
- Guess $T(n) = O(n^3)$. (Note that if we guess Θ , we need prove O and Ω separately.)
- Assume that $T(k) \leq ck^3$ for $k < n$ and some constant $c > 0$.
- Prove $T(n) \leq cn^3$ by induction.

Example of Substitution

$$\begin{aligned} T(n) &= 4T(n/2) + n \\ &\leq 4c(n/2)^3 + n \\ &= (c/2)n^3 + n \\ &= cn^3 - ((c/2)n^3 - n) \quad \text{desired} - \text{residual} \\ &\leq cn^3 \quad \text{desired} \end{aligned}$$

whenever $(c/2)n^3 - n \geq 0$, for example, if $c \geq 2$ and $n \geq 1$.



Example (Continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \leq n < n_0$, we have “ $\Theta(1)$ ” $\leq cn^3$, if we pick c big enough.

Example (Continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \leq n < n_0$, we have “ $\Theta(1)$ ” $\leq cn^3$, if we pick c big enough.

This bound is not tight!

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$$\begin{aligned} T(n) &= 4T(n/2) + n \\ &\leq 4c(n/2)^2 + n \\ &= cn^2 + n \\ &= O(n^2) \end{aligned}$$

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$$\begin{aligned} T(n) &= 4T(n/2) + n \\ &\leq 4c(n/2)^2 + n \\ &= cn^2 + n \\ &= \cancel{O(n^2)} \end{aligned}$$

Wrong! We must prove the I.H.

A Tighter Upper Bound?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \leq ck^2$ for $k < n$:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^2 + n$$

$$= cn^2 + n$$

~~$= O(n^2)$~~

Wrong! We must prove the I.H.

$$= cn^2 - (-n) \quad [\text{desired} - \text{residual}]$$

$$\leq cn^2 \quad \text{for no choice of } c > 0. \text{ Lose!}$$

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$

A Tighter Upper Bound!

IDEA: Strengthen the inductive hypothesis.

- Subtract a low-order term.

Inductive hypothesis: $T(k) \leq c_1 k^2 - c_2 k$ for $k < n$

$$\begin{aligned}
 T(n) &= 4T(n/2) + n \\
 &\leq 4(c_1(n/2)^2 - c_2(n/2)) + n \\
 &= c_1 n^2 - 2c_2 n + n \\
 &= c_1 n^2 - c_2 n - (c_2 n - n) \\
 &\leq c_1 n^2 - c_2 n \text{ if } c_2 \geq 1
 \end{aligned}$$

Pick c_1 big enough to handle the initial conditions.

A Tighter Lower Bound

We shall prove that $T(n) = \Omega(n^2)$.

A Tighter Lower Bound

We shall prove that $T(n) = \Omega(n^2)$.

Assume that $T(k) \geq ck^2$ for $k < n$, and for some chosen constant c .

$$\begin{aligned} T(n) &= 4T(n/2) + n \\ &\geq 4c(n/2)^2 + n \\ &= cn^2 + n \\ &\geq cn^2 \end{aligned}$$

Recursion-tree Method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable.
- The recursion tree method is good for generating guesses for the substitution method.

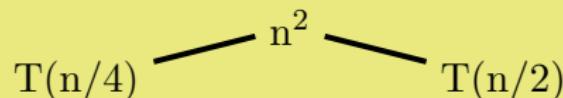
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$T(n)$

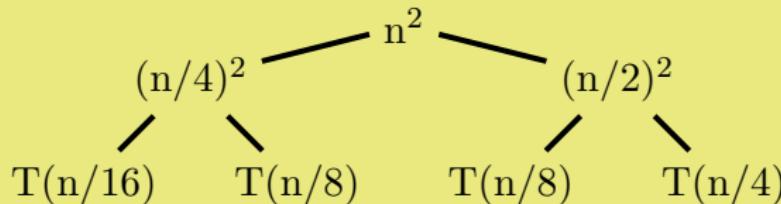
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



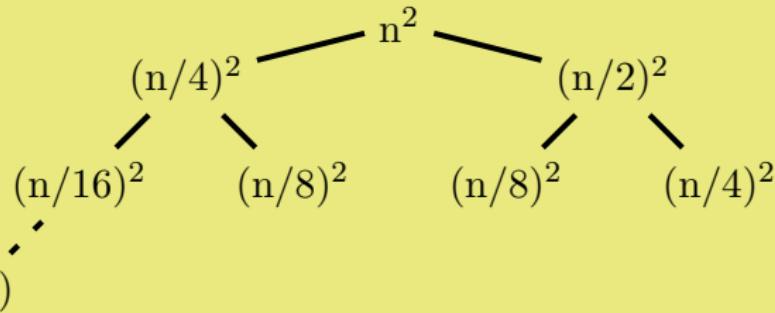
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



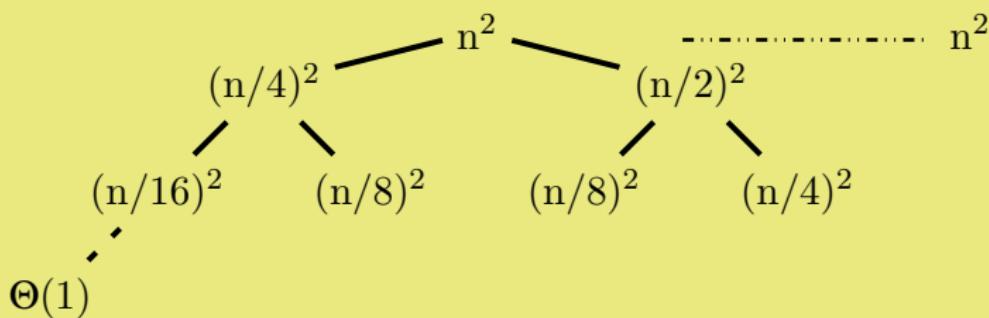
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



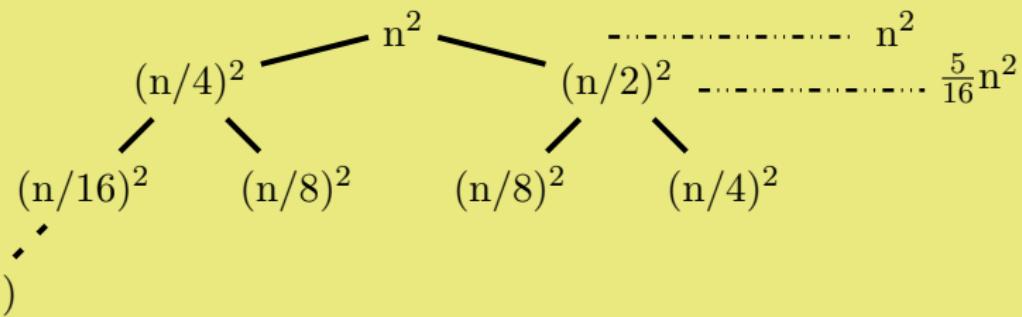
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



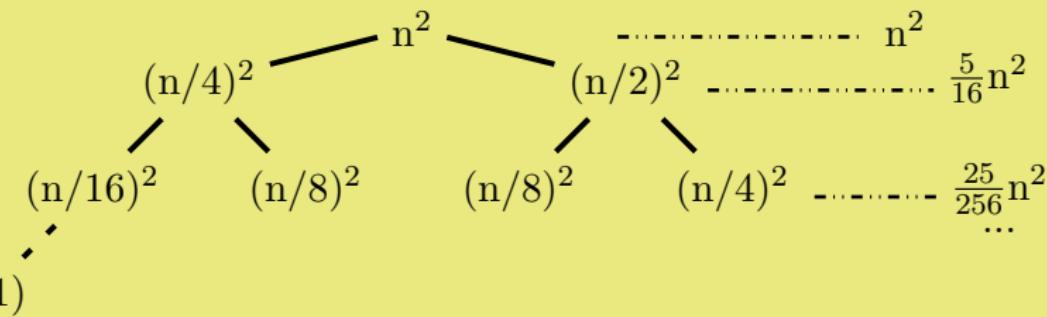
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



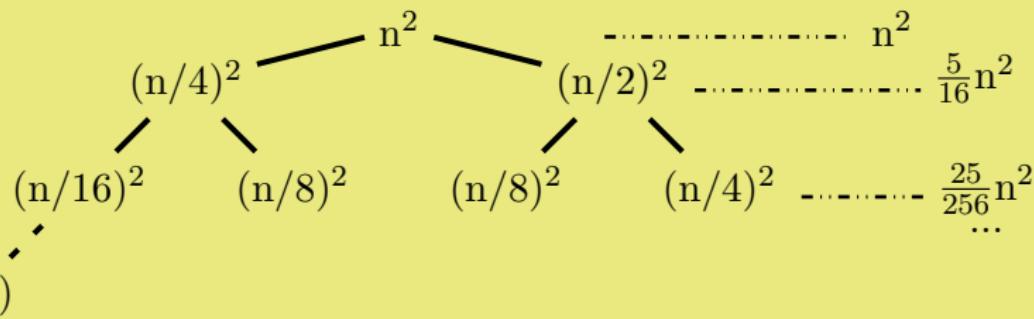
Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



Example of Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



$$\text{Total} = n^2 \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^2 + \left(\frac{5}{16}\right)^3 + \dots \right) = \Theta(n^2)$$

(geometric series)

The Master Method

Master method

The master method applies to recurrences of the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \geq 1$, $b > 1$, and f is asymptotically positive.

Three Common Cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$

- $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ϵ factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Three Common Cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$

- $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ϵ factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \geq 0$

- $f(n)$ and $n^{\log_b a} \lg^k n$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Three Common Cases

Compare $f(n)$ with $n^{\log_b a}$:

3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

- $f(n)$ grows polynomially faster than $n^{\log_b a}$ (by an n^ε factor), and $f(n)$ satisfies the **regularity condition** that $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n .

Solution: $T(n) = \Theta(f(n))$.

Examples

Ex. $T(n) = 4T(n/2) + n$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$$

Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$

$$\therefore T(n) = \Theta(n^2).$$

Examples

Ex. $T(n) = 4T(n/2) + n$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$$

Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$

$$\therefore T(n) = \Theta(n^2).$$

Ex. $T(n) = 4T(n/2) + n^2$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$$

Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.

$$\therefore T(n) = \Theta(n^2 \lg n).$$

Examples

Ex. $T(n) = 4T(n/2) + n^3$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$

Case 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$

and $4(n/2)^3 \leq cn^3$ (reg. cond.) for $c = 1/2$.

$\therefore T(n) = \Theta(n^3).$

Examples

Ex. $T(n) = 4T(n/2) + n^3$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$$

Case 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$

and $4(n/2)^3 \leq cn^3$ (reg. cond.) for $c = 1/2$.

$$\therefore T(n) = \Theta(n^3).$$

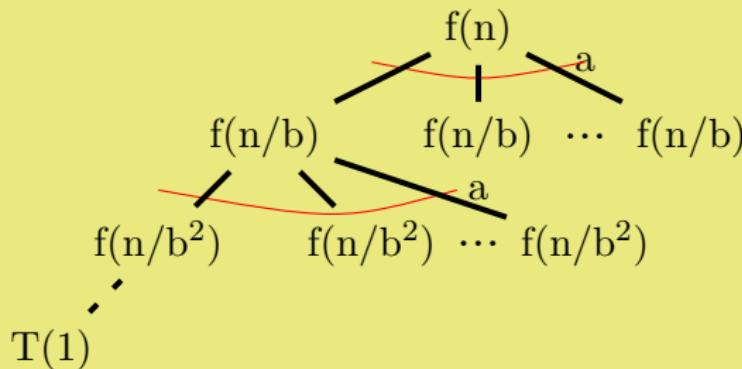
Ex. $T(n) = 4T(n/2) + n^2/\lg n$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$$

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^\varepsilon = \omega(\lg n)$.

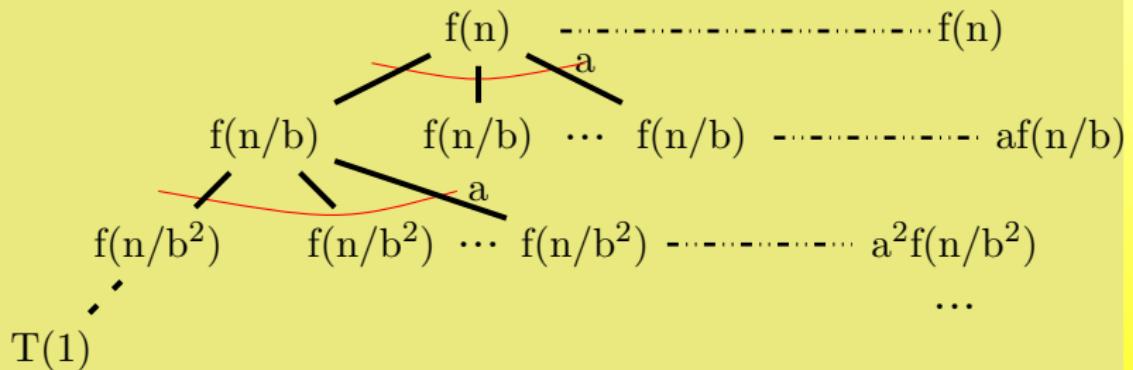
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



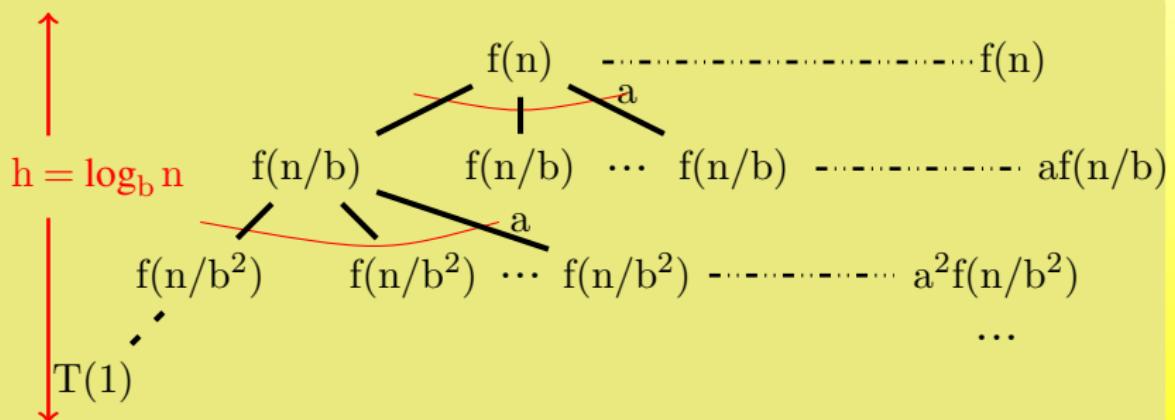
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



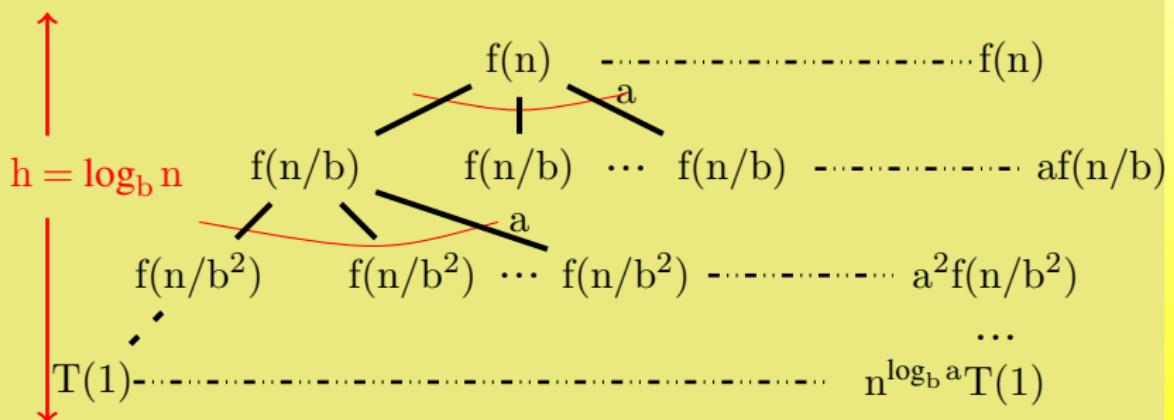
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



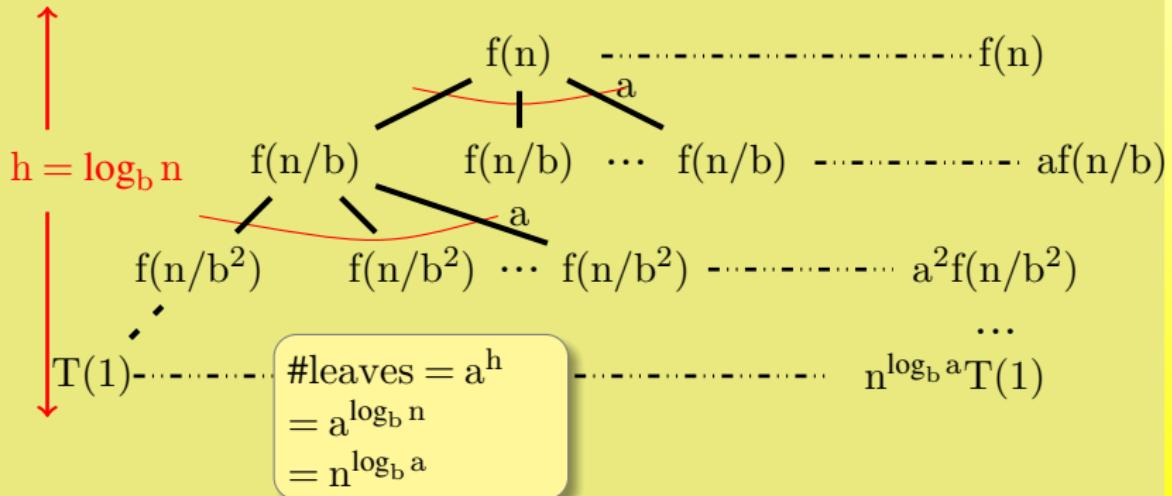
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



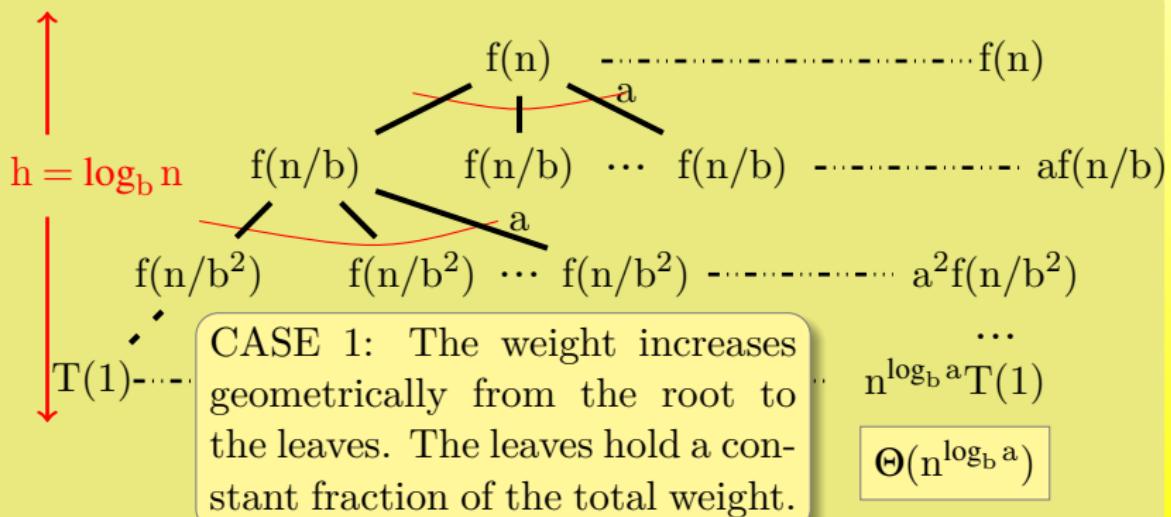
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



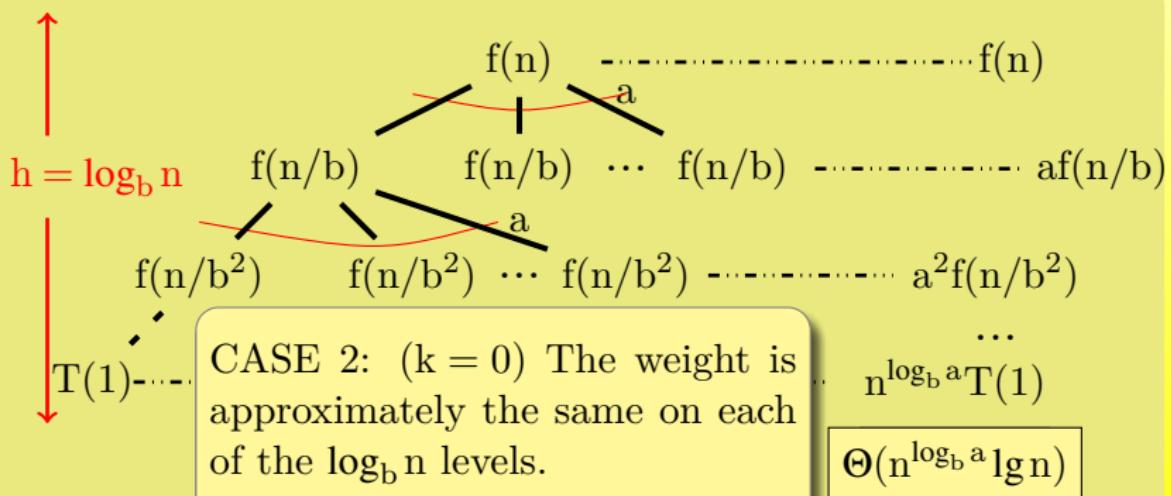
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



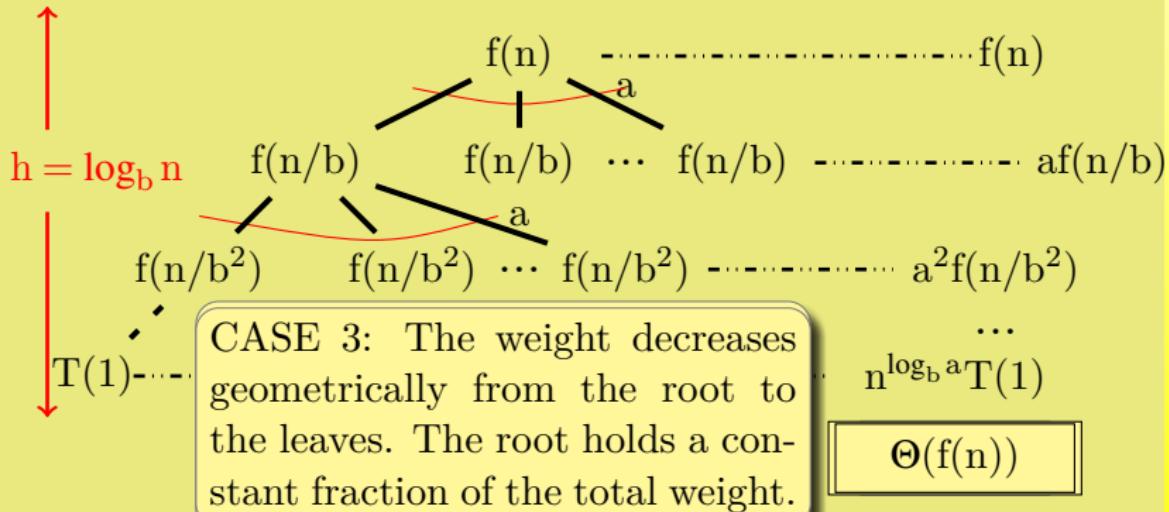
Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



Idea of Master Theorem

$T(n) = aT\left(\frac{n}{b}\right) + f(n)$. Recursion tree:



Appendix: Geometric Series

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x} \quad \text{for } x \neq 1$$

$$1 + x + x^2 + \dots = \frac{1}{1 - x} \quad \text{for } |x| < 1$$