Introduction to Algorithms

Topic 3 : Comparison Based Sorting Algorithms

Xiang-Yang Li and Haisheng Tan!

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

g Li and Haisheng Tan Introduction to Algorithms

Outline

Outline

Basic Concepts
Simple Sorting Algorithms
Efficient Sorting Algorithms

Summary

Li and ng Tan Introduction to Algorithms

Basic Concepts

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data
objects of the same keyword will be kept in the same order as in
the input during the sorting process, which is called stable
sorting. Otherwise, called unstable sorting.

Example: 2,2*/1 — 1,2*,2 (unstable sorting)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Basic Concepts

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data
objects of the same keyword will be kept in the same order as in
the input during the sorting process, which is called stable
sorting. Otherwise, called unstable sorting.

Example: 2,2*/1 — 1,2*,2 (unstable sorting)
Time Complexity

Usually measured by the number of data comparisons and
the number of data movements in the algorithm execution.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Basic Concepts

Basic Concepts of Sorting Algorithm

Stability

Regardless of how the input data is distributed, the data
objects of the same keyword will be kept in the same order as in
the input during the sorting process, which is called stable
sorting. Otherwise, called unstable sorting.

Example: 2,2*/1 — 1,2*,2 (unstable sorting)
Time Complexity

Usually measured by the number of data comparisons and
the number of data movements in the algorithm execution.
In-place Sorting

only a constant of elements are stored outside the input
array.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Contents

Simple Sorting Algorithms
Insertion Sort

Introduction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Insertion Sort

General idea: Maintain an ordered sequence.

Introduction to Algorithr

Insertion Sort
Simple Sorting Algorithms Sele S

Insertion Sort

General idea: Maintain an ordered sequence.

Insertion-Sort(A)
1: for j =2 to A.length do
2: key = A[j]
// Insert A[j] into the sorted sequence A[l..j—1].
i=j—1
while 1 > 0 and A[i] > key do
Afli+1] = A[j
i=i—1
Ali+1] =key

-Yang Li and Haisheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithr

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

Insertion Sort
Simple Sorting orithms Selection Sort
Bubble Sort

Example of Insertion Sort

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Insertion Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Insertion Sort

» Time Complexity
> Best: O(n)
> Average: O(n?)
» Worst: O(n?)

» Memory: 1

> Stable: Yes

isheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Insertion Sort

Insertion-Sort(A)
1: for j =2 to A.length do

» Time Complexity 28 key = Afj]
> Best: O(n) 3: // Insert Alj] into the sorted
> Average: O(n?) sequence A[l..j—1].

» Worst: O(n?)
» Memory: 1
> Stable: Yes

i=j—1

while i > 0 and A[i] > key do
Ali+1] = AJj]
i=i—-1

Ali+1] =key

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms lection Sort
Bubble Sort

Contents

Simple Sorting Algorithms

Selection Sort

Introduction to Algorithr

ertion Sort

Simple Sorting Algorithms

Selection Sort

General idea: Select and remove the smallest element from
unsorted set.

isheng Tan Introduction to Algorithms

Simple Sorting Algorithms

Selection Sort

General idea: Select and remove the smallest element from
unsorted set.

Selection-Sort(A)
1: fori=1 to A.length—1 do
P k=i > k is the position of the smallest key.

3 for j=i+4+1 to A.length do
4 if Afj] < A[k] then

5: k=]j

6 if k #1 then

7 Ali] <> A[K]

-Yang Li and Haisheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
8 2 4 9 3 6

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 8 4 9 3 6

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 8 4 9 3 6

1)

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 3 4 9 8 6

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 3 4 9 8 6

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 3 4 9 8 6

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

smallest
2 3 4 6 8 9

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Selection Sort

duction to Algorithms

ertion Sort

Simple Sorting Algorithms

Selection Sort

» Time Complexity
» Best: O(n?)
> Average: O(n?)
» Worst: O(n?)
» Memory: 1

» Stable: No

isheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Selection Sort

Selection-Sort(A)
» Time Complexity 1: fori=1 to A.length—1 do
> Best: O(n?) 2: k=i
> Average: O(n?) 3 for j=i+1 to A.length do
> Worst: O(n?) 4 if Afj] < A[k] then
» Memory: 1 5: k=j
» Stable: No 6 if k #1i then
7 Ali] < A[K]

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

ertion Sort

Simple Sorting Algorithms

Selection Sort

Stable sorting: How to revise the selection sorting to make it
stable?

isheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
B le Sort

Contents

Simple Sorting Algorithms

Bubble Sort

Introduction to Algorithr

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Bubble Sort

General idea: From the back to the front, if some elements are
smaller than their predecessor, then swap them.

isheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Bubble Sort

General idea: From the back to the front, if some elements are
smaller than their predecessor, then swap them.

Bubble-Sort(A)
1: fori=1 to A.length—1 do
P noswap = TRUE
for j = A.length — 1 downto i do
if A[j+1] < AJj] then
Afj] > A +1]
noswap = FALSE
if noswap then break

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Bubble Sort

duction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j41

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j+1

Introduction to Algorithms

Insertion Sort

Simple Sorting Algorithms selection Sort

Example of Bubble Sort

i j41

Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Example of Bubble Sort

duction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Bubble Sort

» Time Complexity
> Best: O(n)
> Average: O(n?)
» Worst: O(n?)

» Memory: 1

» Stable: Yes

isheng Tan Introduction to Algorithms

Insertion Sort
Simple Sorting Algorithms Selection Sort
Bubble Sort

Bubble Sort

Bubble-Sort(A)
» Time Complexity 1: for i=1 to A.length—1 do
» Best: O(n) 2: noswap = TRUE
> Average: O(n?) for j = A.length — 1 downto i do
> Worst: O(n?) if A[j+1] < A[j] then
» Memory: 1 Afj] & A[j+1]
» Stable: Yes noswap = FALSE
if noswap then break

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting orithms Quicksort

Contents

Efficient Sorting Algorithms
Shellsort

Introduction to Algorithr

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Shellsort

General idea:
» Choose a descending gap sequence (e.g., D =[5,3,2,1]).
» In each round, elements with the same gap d are in the
same group.
» Apply Insertion-Sort for each group.

» Reduce the amount of data migration that caused by
insertion sort.

Li and ng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms i

Shellsort

Shell-Pass(A,d)
1: fori=d+1tondo
2 if Afi] < A[i—d] then

3: key = A[i] //Ali] is to inserted in the correct
position

4: j=i—d

5: while j > 0 and key < A[j] do

6: Afj+d] = AJj)

7 j=j—d

8: Alj+d] =key

Shellsort(A, D)

1: for increment in D do
2: Shell-Pass(A, increment,)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19/57

Shellsort

Efficient Sorting Algorithms

Example of Shellsort

21 25 49 25 16 08 27 04 55 48

isheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting orithms Quicksort

Example of Shellsort

21 25 49 25 16 08 27 04 48 d=3

ot
t

Introduction to Algorithr

Efficient Sorting Algorithms

Example of Shellsort

21 25 49 25 16 08 27 04 55 48 d=3

21 04 08 25 16 49 27 25 55 48

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Example of Shellsort

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Shellsort

21 25 49 25 16 08 27 04 55 48 d=3

21 04 08 25 16 49 27

[\
(@]
Ut
Ot
D~
0%9)
o
Il
[\)

08 04 16 25 21 25 27 48 55 49

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Shellsort

21 25 49 25 16 08 27 04 55 48 d=3

21 04 08 25 16 49 27

[\
(@]
Ut
Ot
D~
0%9)
o
Il
[\)

08 04 16 25 21 25 27 48 55 49 d=1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsc
Efficient Sorting Algorithms i

Example of Shellsort

21 25 49 25 16 08 27 04 48 d=3

ot
t

21 04 08 25 16 49 27 25 55 48 d=2

08 04 16 25 21 25 27 48 55 49 d=1

04 08 16 21 25 25 27 48 49 55

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Shellsort

» Time Complexity
» Best: depends on the gap sequence
» Average: depends on the gap sequence
» Worst: depends on the gap sequence, e.g., O(n*/3), when
the gap sequence is 4K +3-25"1 4+ 1, prefixed with 1.
» Memory: 1

» Stable: No

Li and ng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Shellsort

Shellsort
Why Shellsort typically performs faster?

» Insertion-Sorting small-sized array although costs O(n?) in
the worst case, but it is similar to O(n) in values.

» For large array, when we use a gap large enough (in the
order of O(n)), each sub-array has a small size, thus
efficient to sort.

» After enough iterations, when the gap is small, the

majority part of the array is already sorted (thus the
complexity is small again).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Shellsort

How to select the gap sequence?
> [5:]: time complexity ©(n?)
> 2[525]+1: time complexity O(n?)
> 2K_1: time complexity ®(n?)
> 2541 (k> 0): time complexity ©(n?)
» Successive numbers of the form 2P39 for prime numbers p,

q: time complexity ®(nlog?n).

Introduction to Algorithms

Xiang-Yang Li and Haisheng Tan

Efficient Sorting Algorithms

Shellsort: the lowerbound on the time-complexity

The worst-case complexity of any version of Shellsort is of
higher order: Plaxton, Poonen, and Suel showed that it grows

1 2
at least as rapidly as Q | n _0sh .
loglogn

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting orithms Quicksort

Contents

Efficient Sorting Algorithms

Heapsort

duction to Algorithr

Efficient Sorting Algorithms Quicksort

Basic Concepts of Heap

Heap

A data structure which is an array object that can be
viewed as a nearly complete binary tree.

The tree is completely filled on all levels except possibly
the lowest, which is filled from the left up to a point.

Given the index i of a node, the indices of its parent
Parent(i), left child Left(i), and right child Right(i) can be
computed simply:

Parent (i) return |i/2]
Left(i) return 2 x1i
Right(i) return 2xi+1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Example of Max-heap

max-heap: A[Parent(i)] > Ali], for all i other than the root.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Maintaining the Heap Property

Assumption: sub-trees rooted at Left(i) & Right(i) are
max-heaps.

Max-Heapify(A,i) // Input an an array and an index i

10:

1:
2
3
4
5:
6
7
8
9

: 1= Left(i);
: r = Right(i)
. if 1 < A.heap-size and A[l] > A[i] then

largest =1
else largest =i

. if r < A.heap-size and A[r] > A[largest] then

largest =1

. if largest # i then

Ali] <> Aflargest]
Max-Heapify (A, largest)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Maintaining the Heap Property

Example: MAX-HEAPIFY (A, 2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Maintaining the Heap Property

Example: MAX-HEAPIFY (A, 2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Maintaining the Heap Property

Example: MAX-HEAPIFY (A, 2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Maintaining the Heap Property

Example: MAX-HEAPIFY (A, 2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Maintaining the Heap Property

Example: MAX-HEAPIFY (A, 2)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Maintaining the Heap Property

Assumption: sub-trees rooted at Left(i) & Right(i) are
max-heaps.

Max-Heapify(A,i) // Input an an array and an index i

10:

1:
2
3
4
5:
6
7
8
9

: 1= Left(i);
: r = Right(i)
. if 1 < A.heap-size and A[l] > A[i] then

largest =1
else largest =i

. if r < A.heap-size and A[r] > A[largest] then

largest =1

. if largest # i then

Ali] <> Aflargest]
Max-Heapify (A, largest)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the
leaves are the nodes indexed from |A.length/2]+1 to n, and
each leaf is a 1-element max-heap to begin with.

Li and ng Tan Introduction to Algorithms

Efficient Sorting Algorithms Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the
leaves are the nodes indexed from |A.length/2]+1 to n, and
each leaf is a 1-element max-heap to begin with.

Build-Max-Heap(A)
1: A.heap-size = A.length

2: for i = [A.length/2| downto 1 do
3: Max-Heapify(A,i)

-Yang Li and Haisheng Tan

Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Building a Heap

Allength =10
4 1 3 2 16 9 10 14 8 7

isheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 3 2 16 9 10 14 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 3 2 16 9 10 14 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 3 2 16 9 10 14 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 3 14 16 9 10 2 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 3 14 16 9 10 2 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 10 14 16 9 3 2 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Alength =10
4 1 10 14 16 9 3 2 8 7

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Allength =10
4 16 10 14 7 9 3 2 8 1

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Allength =10
4 16 10 14 7 9 3 2 8 1

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Building a Heap

Allength =10
16 14 10 8 7 9 3 2 4 1

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the
leaves are the nodes indexed from |A.length/2]+1 to n, and
each leaf is a 1-element max-heap to begin with.

Li and ng Tan Introduction to Algorithms

Efficient Sorting Algorithms Quicksort

Building a Heap

Fact: with the array representation of an n-element heap, the
leaves are the nodes indexed from |A.length/2]+1 to n, and
each leaf is a 1-element max-heap to begin with.

Build-Max-Heap(A)
1: A.heap-size = A.length

2: for i = [A.length/2| downto 1 do
3: Max-Heapify(A,i)

-Yang Li and Haisheng Tan

Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms Quicksort

The Heapsort Algorithm

General idea: Same as selection sort, maintain the minimum
(maximum) element by using heap.
MAX-HEAP: A[1] always stores the largest number.

Li and ng Tan Introduction to Algorithms

Efficient Sorting Algorithms Quicksort

The Heapsort Algorithm

General idea: Same as selection sort, maintain the minimum
(maximum) element by using heap.

MAX-HEAP: A[1] always stores the largest number.

Heapsort(A)
1: Build-Max-Heap(A)
2: for i = A.length downto 2 do

3: Afl] + Afj]
4: A heap-size = A.heap-size — 1
55 Max-Heapify(A,1)

Xiang-Yang Li and Haisheng Tan

Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting A i s Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting A i s Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting A i s Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting i s Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting i s Quicksort

Example of Heapsort

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heapsort

Efficient Sorting Algorithms

Heapsort

» Time Complexity
» Max-Heapify: O(logn) — Why?
» Build-Max-Heap: O(n) - Why?
»> Best: O(nlogn)
> Average: O(nlogn)
» Worst: O(nlogn)

> Memory: 1

» Stable: No

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms Quicksort

Priority Queues

A priority queue is a data structure for maintaining a set S
of elements, each with an associated value called a key. A
max-priority queue supports the following operations:

» Insert(S,x) inserts the element x into the set S, which is
equivalent to the operation S = SU {x}.

» Maximum(S) returns the element of S with the largest key.

» Extract-Max(S) removes and returns the element of S with
the largest key.

» Increase-Key(S,x,k) increases the value of element x’s key

to the new value k, which is assumed to be at least as large
as x’s current key value.

-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Priority Queues

Heap-Extract-Max(A)

1: if A.heap-size < 1 then

2 error “heap underflow”
Heap-Maximum(A) 3: max = A[l] '
1: return A[l] 4: A[1] = A[A heap-size]

5: A.heap-size =

A heap-size — 1
6: Max-Heapify(A,1)
7: return max

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Priority Queues

Heap-Increase-Key (A, i,key)

1. if key < A[i] then

% error “new key is smaller than current key”
3: Ali] = key

4: while i > 1 and A[Parent(i)] < A[i] do

5: Ali] +» A[Parent(i)]

6: i = Parent(i)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39/57

Shellsort

Efficient Sorting Algorithms Quicksort

Priority Queues

Max-Heap-Insert(A, key)

1: A.heap-size = A.heap-size + 1

2: A[A.heap-size| = —oo

3: Heap-Increase-Key(A, A.heap-size, key)

Li and ng Tan

Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting orithms Quicksort

Example of Heap-Increase-Key

duction to Algorithr

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heap-Increase-Key

duction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heap-Increase-Key

duction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heap-Increase-Key

duction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Example of Heap-Increase-Key

duction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Priority Queues

Heap-Increase-Key (A, i,key)

1. if key < A[i] then

% error “new key is smaller than current key”
3: Ali] = key

4: while i > 1 and A[Parent(i)] < A[i] do

5: Ali] +» A[Parent(i)]

6: i = Parent(i)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting orithms

Contents

Efficient Sorting Algorithms

Quicksort

Introduction to Algorithr

Efficient Sorting Algorithms

Quicksort

General idea:

» Arbitrarily choose an element x in the unsorted set for
comparison.

» Divide the unsorted elements into two parts: <x and > x.

» Recursively use Quicksort for the above two parts.

Li and ng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Quicksort

General idea:

» Arbitrarily choose an element x in the unsorted set for
comparison.

» Divide the unsorted elements into two parts: <x and > x.

» Recursively use Quicksort for the above two parts.

Quicksort(A,p,r)

1: if p <r then

2: q = Partition(A,p,r)
3: Quicksort(A,p,q—1)
4: Quicksort(A,q+1,1)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

e

af
Efficient Sorting Algorithms Quicksort

Partition

Partition(A, p,r)
1 x=A[r] // pivot element
2. i=p—1

3: forj=ptor—1do

4 if Afj] <x then

B i=i+1

6 Ali] + AJj]

7. Ali+1] < Afr]

8 returni+1

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Efficient Sorting orithms

Example of Partition

duction to Algorithr

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Shellsort

Efficient Sorting

Example of Partition

Introduction to Algorithms

Efficient Sorting orithms

Example of Partition

duction to Algorithr

Efficient Sorting orithms

Example of Partition

duction to Algorithr

Efficient Sorting Algorithms

Performance of Quicksort

Worst-case partitioning

The worst-case behavior for quicksort occurs when the
partitioning routine produces one subproblem with n—1
elements and one with 0 elements. The partitioning costs ®(n)
time. the recurrence for the running time is

T(n) =T(n—1)+T(0)+O(n)
=T(n—1)+0(n)
_o(n?)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Performance of Quicksort

Best-case partitioning

In the most even possible split, Partition produces two
subproblems, each of size no more than n/2, since one is of size
|n/2] and one of size [n/2] —1. In this case, quicksort runs
much faster. The recurrence for the running time is then

T(n) =2T(n/2)+O(n)
= O(nlgn).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Performance of Quicksort

Balanced partitioning
What if the split is always %0 : 1%? The recurrence for the
running time is

T(n) = T(lion) +T(%n) +0(n)
= O(nlgn).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 49 /57

Efficient Sorting Algorithms

A Randomized Version of Quicksort

Randomized-Partition(A, p,r)

1: i=Random(p,r)

2: Alr] < A[i]

3: return Partition(A,p,r)
Randomized-Quicksort(A, p,r)

1: if p <r then

2: q = Randomized-Partition(A, p,r)
3: Randomized-Quicksort(A,p,q—1)
4: Randomized-Quicksort(A,q+ 1,r)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Analysis of Quicksort

Worst-case analysis

We saw that a worst-case split at every level of recursion in
quicksort produces a ®(n?) running time, which, intuitively, is
the worst-case running time of the algorithm.

Using the substitution method (see Section 4.3), we can
show that the running time of quicksort is O(n?).

eng Tan Introduction to Algorithms

e

af
Efficient Sorting Algorithms Quicksort

Analysis of Quicksort

Let T(n) be the worst-case time for the procedure
Quicksort on an input of size n. We have

Tn)=_ max (T(q)+Tn—-q—1))+0(n)

0<qg<n-1
< m 2+cen—q—1)2+0(n
= qu;ﬂ‘r’fil(cq ¢c(n—q—1) (n))
2 2
=c ogmqgar)f—1(q +(n—q—1)*+0(n))

<cn?—¢(2n—1)+0O(n) < cn®.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Shellsort
Heapsort
Efficient Sorting Algorithms Quicksort

Analysis of Quicksort

Running time and comparisons

Rename the elements of the array A as z1,29,...,2%n, With z;
being the ith smallest element (assuming distinct elements).
Zij = {2, 2141, ...,z } to be the set of elements between z; and z;.
We define

Xij =I{z; is compared to z;}.

Since each pair is compared at most once, we can easily
characterize the total number of comparisons performed by the
algorithm:

eng Tan Introduction to Algorithms

Shellsort

Efficient Sorting Algorithms

Analysis of Quicksort

n—1 n n—1 n
EX]=E [Z Y Xl =) Y EXy
i=1 j=it1 i=1 j=i+1
n—-1 n
=Y) Pr{z is compared to z}
i=1 j=it1

Li and ng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Analysis of Quicksort

i=1 j=i+1
n—1 n
= Z Pr{z; or z; is first pivot chosen from Z;;}
i=1 j=it+1
- n—1 n 2 B n—1 If 9
Sjsnd—itl g k+l
n—1 n 9 n—1
< — = O(lgn) = O(nlgn
lzlkglk > (Ign) = O(nlgn)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Efficient Sorting Algorithms

Quicksort

» Time Complexity
» Best: O(nlogn)
» Average: O(nlogn)
» Worst: O(n?)
» Memory: O(logn) on average, worst case space complexity
is O(n)

» Stable: stable versions exist

Li and ng Tan Introduction to Algorithms

Summary

Summary

Name Average Worst Stable Method
Insertion Sort O(n?) O(n?) Yes Insertion
Selection Sort | O(n?) O(n?) No Selection

Bubble Sort O(n?) O(n?) Yes | Exchanging
Merge sort O(nlogn) | O(nlogn) Yes Merging
Shellsort (%) O(n*3) (%) No Insertion
Heapsort O(nlogn) | O(nlogn) No Selection
Quicksort O(nlogn) O(n?) Exist | Partitioning

*The time complexity of shellsort depends on the selected gap sequence.

A sorting algorithm animation website:
https://www.toptal.com/developers/sorting-algorithms

Xiang-Yang Li and Haisheng Tan

Introduction to Algorithms

	Outline
	Basic Concepts
	Simple Sorting Algorithms
	Insertion Sort
	Selection Sort
	Bubble Sort

	Efficient Sorting Algorithms
	Shellsort
	Heapsort
	Quicksort

	Summary

