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Outline

Selection Problem

» This chapter addresses the problem of selecting the i-th
order statistic from a set of n distinct numbers. We
formally specify the selection problem as follows:

Input: A set A of n (distinct) numbers and an integer i,
with 1 <i<n.

Output: The element x € A that is larger than exactly i— 1
other elements of A.
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9.1 Minimum and Maximum

Minimum and Maximum

» To determine the minimum of a set of n elements, a lower
bound of comparisons is n— 1.
» The following procedure selects the minimum from the
array A, where A.length = n.
MINIMUM(A)
1: min = A[l]
2: for i =2 to A.length do
3 if min > AJi] then
4: min = A[i]
5

: return min
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9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

» In some applications, we must find both the minimum and
the maximum of a set of n elements.

» A simple solution: find the minimum and maximum
independently, using n — 1 comparisons for each, for a total
of 2n — 2 comparisons.

» In fact, we can find both the minimum and the maximum
using at most 3|n/2| comparisons.
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9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

MAX-MIN(A)
1. if A[1] > A[2] then min = A[2],max = A[1]
2: else min = A[1], max = A[2]

3: fori=2to [n/2] do

4 if APRi—1] > A[2]

5 then if A[2i] < min then min = A[2i]

6: if A[2i— 1] > max then max = A[2i —1]

7 else if A[2i —1] < min then min = A[2i — 1]
8: if A[2i] > max then max = A[2i]

9: if n # 2|n/2] then if A[n] < min then min = A|n]
10: if A[n] > max then max = An]
11: return (min, max)
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9.1 Minimum and Maximum

Simultaneous Minimum and Maximum

» Total number of comparisons:

If n is odd, then we perform 3|n/2| comparisons. If n
is even, we perform 1 initial comparison followed by
3(n—2)/2 comparisons, for a total of 3n/2 —2. Thus, in
either case, the total number of comparisons is at most

3|n/2].
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Overview
9.2 Selection in Expected Linear Time Analysis

Selection in Expected Linear Time

» A divide-and-conquer algorithm for the selection problem:
RANDOMIZED-SELECT.

» The idea is to partition the input array recursively (as in
quick-sort).

» The difference is that quick-sort recursively processes both
sides of the partition, but RANDOMIZED-SELECT only
works on one side of the partition.

» Quick-sort has an expected running time of ®(nlogn), but
the expected time of RANDOMIZED-SELECT is ©(n).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT

RANDOMIZED-SELECT(A, p,r, i)

1: if p==r1 then
2 return A[p]
3: ¢ =RANDOMIZED-PARTITION(A,p,r)
4: k=q—p+1
5: if i ==k then
6 return Alq] // the pivot value is the answer
7: if i <k then

8  return RANDOMIZED-SELECT(A, p,q — L,i)
9

: else
10: return RANDOMIZED-SELECT(A,q+ 1,r,i—k)
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» The worst-case running time for RANDOMIZED-SELECT
is ®(n?), even to find the minimum, because we could be
extremely unlucky and always partition around the largest
remaining element, and partitioning takes ®(n) time.

» The expected running time for RANDOMIZED-SELECT
is O(n).
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» The time required by RANDOMIZED-SELECT on an
input array Afp...r| of n elements is denoted by T(n).

» We define indicator random variables Xy where Xy =I{ the
subarray A[p...q| has exactly k elements }. So we have
E[Xx] = 1, Xi has the value 1 for exactly one value of k,
and it is 0 for all other k. When X = 1, two subarrays on
which we might recurse have sizes k—1 and n—k
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

T(n) < Yh_, Xu(T(max(k—1,n—k)) +O(n))
- 22:1 Xk T(max(k —1,n—k)) +O(n)

E[T(n)] <E[},_, XkT(max(k—1,n—k))+O(n)]
= Zizl E[XyT(max(k—1,n—k))]+O(n)
=Y . EXyE[T(max(k—1,n—k))]+ O(n)

-y %E[T(max(k— 1,n—1))]+O(n)
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

k—1if k> [n/2],

max(k—1,n—k) = { n—kif k < [n/2]

O(n)

» Assume that T(n) < cn for some constant ¢ that satisfies
the initial conditions of the recurrence. Pick a constant a
such that the function described by the O(n) term above
(which describes the non-recursive component of the
running time of the algorithm) is bounded from above by
an for all n > 0.
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

E[T(n)] < %ZE:En/QJ ck+an
%( kYA >+an
:2nc<(n—21)n_(Ln/2J —21)Ln/2J)+ N
SQDC((n—Ql)n_(n/2—2)2(n/2—1))+an
R
S?)?Tn—i-%—i-anzcn—(%—g—an)
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Overview
9.2 Selection in Expected Linear Time Analysis

RANDOMIZED-SELECT - Analysis

» For sufficiently large n, we have

c ¢
Z_a)> =

n(4 a) > >

» As long as we choose the constant ¢ so that ¢/4 —a > 0,
i.e., ¢ > 4a, we can divide both sides by c/4 —a, giving

c/2 2c
n> =
“c/i—a c—4a

> If we assume that T(n) = O(1) for n < 2 we have
T(n) = O(n).

> So any order statistic, and in particular the median, can be
determined on average in linear time.
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Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time

» We now examine a selection algorithm whose running time
is O(n) in the worst case. Like RANDOMIZED-SELECT,
the algorithm SELECT finds the desired element by
recursively partitioning the input array.

» The SELECT algorithm determines the i th smallest of an
input array of n > 1 distinct elements by executing the
following steps. (If n =1, then SELECT merely returns its
only input value as the i th smallest.)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time

» 1. Divide the n elements of the input array into |n/5|
groups of 5 elements each and at most one group made up
of the remaining n mod 5 elements.

» 2. Find the median of each of the |n/5] groups.

» 3. Use SELECT recursively to find the median x of the
|n/5] medians found in step 2.

» 4. Partition the input array around the median-of-medians
x using the modified version of PARTITION. So that x is
the kth smallest element and there are n —k elements on
the high side and k — 1 elements on the low side.

> 5. If i =k, then return x. Otherwise, use SELECT
recursively to find the i th smallest element on the low side
if i <k, or the (i—k) th smallest element on the high side if
i>k.
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Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» To analyze the running time of SELECT, we first
determine a lower bound on the number of elements that
are greater than the partitioning element x.

» At least half of the [n/5] groups contribute 3 elements that
are greater than x, except for the one group that has fewer
than 5 elements if 5 does not divide n exactly, and the one
group containing x itself. So the number of elements
greater than x is at least

1 _n 3n
Ly g)p 20
3 < [2 [51—‘ — 10 0
» So in the worst case, SELECT is called recursively on at
most 7“ 5 + 6 elements in step 5.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

> Steps 1, 2, and 4 take O(n) time.

» Step 3 takes time T([n/5]), and step 5 takes time at most
T(7n/1046), assuming that T is monotonically increasing

> Assume that any input of 140 or fewer elements requires

O(1) time.
» So we have the recurrence
0(1) if n <140,
T(n) < )
T([n/5]) +T(7n/10+6)+O(n) if n > 140.
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Overview
Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Assuming that T(n) < cn for some suitably large constant c
and all n < 140.

» Pick a constant a such that the function described by the
O(n) term above is bounded above by an for all n > 0.

» So we have

T(n) <c[n/5]+¢(7n/104+6)+an
<cn/5+c+T7cn/10+46¢+an
=9cn/10+ 7c+an
=cn+ (—cn/10+ 7c+an)
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Analysis
9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Thus T(n) is at most cn if( —en/10+ 7c+an < 0)
¢ >10a(n/(n—"70))when n > 70

Because n > 140 n/(n—70) <2
So choosing ¢ > 20a will satisfy inequality.

» The worst-case running time of SELECT is therefore linear.

» The algorithm is still correct if each group has r elements
where 1 is odd and is not less than 5.
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9.3 Selection in Worst-case Linear Time

Selection in Worst-case Linear Time - Analysis

» Sorting requires Q(nlogn) time in the comparison model,
even on average, and the linear-time sorting algorithms in
Chapter 8 make assumptions about the input.

» But the linear-time selection algorithms in this chapter do
not require any assumptions about the input.

» The running time is linear because these algorithms do not
sort.
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