Introduction to Algorithms
Advanced Data Structures: Il

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 1/83

Outline

Outline of Topics

Binomial Heaps

Fibonacci Heaps

Data Structures for Disjoint Sets

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 2/83

Binomial Heaps

Mergeable Heap (min-heap by default)

» A data structure supports the following operations:

1. MAKE-HEAP(): Create and return a new heap containing no
elements
INSERT(H,x): Insert element x
MINIMUM(H): Return min element
EXTRACT-MIN(H): Return and delete minimum element
UNION(H;,Ho): Create and return a new heap that contains all
the elements of heaps H; and H,.

S ENCORID

» Some other operations: Decrease key of element x to k;
Delete an element.

» Applications: Dijkstra's shortest path algorithm, Prim’'s MST
algorithm, Event-driven simulation, Huffman encoding,
Heapsort...

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 3/83

Binomial Heaps

Mergeable Heap

Heaps
Operation Linked List Binary Binomial Fibonacci Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
is-empty 1 1 1 1 1

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 4/83

Binomial Heaps

Binomial Tree

P Recursive definition: By is a single node. By consists of 2
binomial trees By 1 linked together, where the root of one
subtree is the leftmost child of the other.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 5/83

Binomial Heaps

Useful Properties

» For order k binomial tree By
1. Number of nodes = 2k
2. Height = k
3. Degree of root = k
4. Deleting root yields binomial trees
Bi—1, .-, By

k
5. B has (I) nodes at depth /

» Proved by induction.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 6/83

Binomial Heaps

Useful Properties - Example

depth 0

depth 1

depth 2 ‘
depth 3 ‘

depth 4 ‘ B,

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 7/83

Binomial Heaps

Binomial Heap: Overview

» Sequence of binomial trees that satisfy binomial heap
property:
1. Each tree is min-heap ordered
2. 0 or 1 binomial tree of order k can be included.

B, B,

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 8/83

Binomial Heaps

Binomial Heap: Implementation

P> Represent trees using left-child, right sibling pointers.
Three links per node: parent, left (left-most child), right
(right sibling).

» Roots of trees connected with singly linked list.
Degrees of trees strictly increasing as we traverse the root list.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 9/83

Binomial Heaps

Binomial Heap: Implementation

Head[H]

O—0
eoee

0 I@.

Figure: A binomial heap H and its more detailed representation. The
heap consists of binmial tree By, B, and B3 which have 1,4 and 8 nodes
respectively.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 10/83

Binomial Heaps

Binomial Heap: Properties

» Properties of N-node binomial heap
1. Min key contained in root of By, Bi, .., Bk
2. Contains binomial tree B; iff b; = 1 where b,, - byby by is binary
representation of N = ZUOg M b2'.
At most |log N| + 1 binomial trees.
4. Height < |log N|

e

N=19
#trees=3
height =4
binary = 10011

B, B,

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 11/83

Binomial Heaps

Binomial Heap: Union

» Create H that is union of heaps H' and H” (in O(1) time):
1. “Mergeable heaps”
2. Easy if H and H" are each an order k binomial tree.

a. connect roots of H' and H"”
b. choose smaller key to be root of H

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 12/83

Binomial Heaps

Binomial Heap: Union

+ @
1 1 1
1 0 0 1 1
DT + 0 0 1 1 1
1 1 0 1 O

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 13/83

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 14 /83

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 16 /83

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 17/83

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 18/83

Binomial Heaps

Binomial Heap: Union

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 19/83

Binomial Heaps

Analysis of Union

» Create heap H that is union of heaps H' and H"
Analogous to binary addition.

» Running time: O (log N)
Proportional to number of trees in root lists
llog V| +1+ [log N'|+1<2(|log N|+1)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 20/83

Binomial Heaps

Binomial Heap: Delete Min

» Delete node with minimum key in binomial heap H:
1. Find root x with min key in root list of H, and delete
2. H’ + broken binomial trees
3. H<+ UNION(H', H)

» Running time: O(log N)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 21/83

Binomial Heaps

Binomial Heap: Delete Min

» Delete node with minimum key in binomial heap H:
1. Find root x with min key in root list of H, and delete
2. H’ + broken binomial trees
3. H<+ UNION(H', H)

» Running time: O(log N)

@@@ &

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 22/83

Binomial Heaps

Binomial Heap: Delete Min

» Delete node with minimum key in binomial heap H:

1. Find root x with min key in root list of H, and delete
2. H’ + broken binomial trees
3. H<+ UNION(H', H)

» Running time: O(log N)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

23/83

Binomial Heaps

Binomial Heap: Decrease Key

» Decrease key of node x in binomial heap H:
1. Suppose x is in binomial tree By
2. Bubble node x up the tree if x is too small
» Running time: O(log N)
Proportional to depth of node x < |log, N|

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 24 /83

Binomial Heaps

Binomial Heap: Delete

» Delete node x in binomial heap H:

1. Decrease key of x to —oo
2. DELETEMIN

» Running time: O (log N)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Binomial Heaps

Binomial Heap: Insert

» Insert a new node x into binomial heap H

1. H' + MAKEHEAP(x)
2. H<+ UnioN(H', H)

» Running time: O (log N)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Fibonacci Heaps

Heaps
Operation Linked List Binary Binomial Fibonacci Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
is-empty 1 1 1 1 1

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 27/83

Fibonacci Heaps

Fibonacci Heaps: Overview

» Fibonacci heap history: Fredman and Tarjan (1986)
1. Ingenious data structure and analysis
2. Original motivation: O(m+ n log n) shortest path algorithm,
also led to faster algorithms for MST, weighted bipartite
matching
3. Still ahead of its time
» Fibonacci heap intuition:
1. Similar to binomial heaps, but less structured
2. Decrease-key and union run in O(1) time (amortized)
3. “Lazy"” unions

» Fibonacci heaps are named after the Fibonacci numbers,
which are used in their running time analysis.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Fibonacci Heaps

Fibonacci Heaps: Structure

» Fibonacci heap:
Set of min-heap ordered trees

(24) (23) (D
17 24 \2_3/ G/ 3

@ 26 @ marked 18 @

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Fibonacci Heaps

Fibonacci Heaps: Implementation

» Each node contains a pointer to its parent and a pointer to
any one of its children. The children are linked together in a
circular, doubly linked list:

Can quickly splice off subtrees

» Roots of trees connected with circular doubly linked list:
Fast union

» Pointer to root of tree with min element:

Fast find-min

|
I'j@:@ ©) (@) T
N /

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 30/83

Fibonacci Heaps

Fibonacci Heaps: Potential Function

| 2

Degree[x] = degree of node x
D(n) = max degree of any node in Fibonacci heap with n
nodes

v

» Mark[x] = mark of node x(black or gray)
> t(H) = # trees
» m(H) = # marked nodes
» &(H) = t(H) + 2m(H) = potential function
t(H)=5, m(H)=3 degree =3 min
®(H) = 11
17 @)-(23) ® 3
@ 26 @ 18 @ m
() H 3 @)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 31/83

Fibonacci Heaps

Fibonacci Heaps: Insert

> Insert:
1. Create a new singleton tree
2. Add to left of min pointer
3. Update min pointer

» Running time: O(1) amortized

> 0 0 0 4
®9® D @ @
@ H 39 @

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 32/83

Fibonacci Heaps

Fibonacci Heaps: Union

» Union:

1. Concatenate two Fibonacci heaps
2. Root lists are circular, doubly linked lists

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 33/83

Fibonacci Heaps

Fibonacci Heaps: Union

» Union:

1. Concatenate two Fibonacci heaps
2. Root lists are circular, doubly linked lists

» Concatenate the two root lists, and update the min pointer.

» Running time: O(1) amortized

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 34/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

min
|
7 (249) @ @ 3
@ @ @ D @ @
(3) 39 (@)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 35/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

min l
® @ ® @

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 36/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

f\ooZ@
® ¢® @

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 37/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

o

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 38/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

:
26 @ current Q

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 39/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

@ Merge 17 and 23 trees.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 40/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

5 :
@

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 41/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

min current
24 7) a1
D) (@ (1) (o) (9)
@ @ | Merge 7 and 24 trees. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 42/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

P Delete min and concatenate its children into root list
» Consolidate trees so that no two roots have same degree

min current

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 43/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

P Delete min and concatenate its children into root list
» Consolidate trees so that no two roots have same degree

current

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 44 /83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

P Delete min and concatenate its children into root list
» Consolidate trees so that no two roots have same degree

current

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 45/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

l

41

)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 46 /83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 47/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

current

18

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 48 /83

Fibonacci Heaps

Fibonacci Heaps: Delete Min

» Delete min and concatenate its children into root list

» Consolidate trees so that no two roots have same degree

min

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 49 /83

Fibonacci Heaps

Fibonacci Heaps: Delete Min Analysis

» Actual cost: O(D(n)+ t(H))
1. O(D(n)) work adding min's children into root list and updating
min
2. O(D(n) + t(H)) work consolidating trees
» Amortized cost: O(D(n))

1. t(H") < D(n) + 1 since no two trees have same degree
2. A®(H) < D(n)+1—t(H)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 50/83

Fibonacci Heaps

Fibonacci Heaps: Delete Min Analysis

» |s amortized cost of O(D(n)) good?
1. Yes, if only Insert, Delete-min, and Union operations supported

a. In this case, Fibonacci heap contains only binomial trees since we
only merge trees of equal root degree
b. This implies D(n) < |log, N|

2. Yes, if we support Decrease-key in clever way

a. We'll show that D(n) < |log, N| where ¢ is golden ratio
b. Limiting ratio between successive Fibonacci numbers!

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 51/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 0: min-heap property not violated

1. Decrease key of x to k
2. Change heap min pointer if necessary

| Decrease 46 to 45.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 52/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 0: min-heap property not violated

1. Decrease key of x to k
2. Change heap min pointer if necessary

| Decrease 46 to 45.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 53/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 1: min-heap property violated; and parent of x is
unmarked

1. Decrease key of x to k

2. Cut off link between x and its parent

3. Mark parent

4. Add tree rooted at x to root list, updating heap min pointer
— min

@ @ @
&2

| Decrease 45 to 15. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 54 /83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 1:min-heap property violated; and parent of x is
unmarked

1. Decrease key of x to k

2. Cut off link between x and its parent

3. Mark parent

4. Add tree rooted at x to root list, updating heap min pointer
— min

@ @ @
&2

| Decrease 45 to 15. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 55/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 1:min-heap property violated; and parent of x is
unmarked

1. Decrease key of x to k

2. Cut off link between x and its parent

3. Mark parent

4. Add tree rooted at x to root list, updating heap min pointer

& @ B f
26 @
@ Decrease 45 to 15.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 56 /83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 1:min-heap property violated; and parent of x is
unmarked

1. Decrease key of x to k

2. Cut off link between x and its parent

3. Mark parent

4. Add tree rooted at x to root list, updating heap min pointer
— min

@ @ @
&2

| Decrease 45 to 15. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 57 /83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 1:min-heap property violated; and parent of x is
unmarked

1. Decrease key of x to k

2. Cut off link between x and its parent

3. Mark parent

4. Add tree rooted at x to root list, updating heap min pointer

min

/7\{/ 18 38
2 24 @ @
26 @ @
@ Decrease 45 to 15. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 58 /83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 2:min-heap property violated; and parent of x is marked

1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

min

38

C o C
; D @ ® @ @
26 @ @
@ Decrease 35 to 5. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 59/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 2:min-heap property violated; and parent of x is marked

1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it

b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

min

38

; 2 @ ® & &
26 @ @
5 Decrease 35 to 5. |

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 60/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 2:min-heap property violated; and parent of x is marked

1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

mln
18 ?
@& @ @ @
[perentmaried=> @ @
Decrease 35 to 5.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 61/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 2:min-heap property violated; and parent of x is marked

1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it
b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

............ @ 26 /_;\{/ min f
D ”

| Decrease 35 to 5.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 62/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key

» Case 2: parent of x is marked

1. Decrease key of x to k
2. Cut off link between x and its parent p[x], and add x to root list
3. Cut off link between p[x] and p[p[x]], add p[x] to root list

a. If p[p[x]] unmarked, then mark it

b. If p[p[x]] marked, cut off p[p[x]], unmark, and repeat

| Decrease 35 to 5.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 63/83

Fibonacci Heaps

Fibonacci Heaps: Decrease Key Analysis

» Actual cost: O(c)
1. O(1) time for decrease key
2. O(1) time for each of c cascading cuts, plus reinserting in root
list
» Amortized cost: O (1)
1. t(H)=tH)+c
2. m(H)<m(H)—c+2
3. A(H)<c+2(—c+2)=4-c

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 64 /83

Fibonacci Heaps

Fibonacci Heaps: Delete

» Delete node x:

1. Decrease key of x to —oo
2. Delete min element in heap

» Amortized cost: O(D(n))

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 65/83

Fibonacci Heaps

Fibonacci Heaps: Bounding Max Degree

> Key lemma: In a Fibonacci heap with N nodes, the

maximum degree of any node, denoted as D(N), is at most
log, N, where ¢ = (HT‘/E)
» Corollary: Delete and Delete-min take O(log N) amortized

time

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 66 /83

Fibonacci Heaps

Fibonacci Facts

» Definition: The Fibonacci sequence is

0 if k=0
Fr=<1 if k=1
Fio1+ Fr—o ifk2>2

» Fact 1: F o > ¢¥

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 67 /83

Fibonacci Heaps

Fibonacci Facts

» Definition: The Fibonacci sequence is

0 if k=0
Fr=<1 if k=1
Fr1+ Fro ifFk>2
» Fact 1: F o > ¢¥
Proved by induction, and ¢? = ¢ + 1.
> Fact 2: For k>0, Fro =1+ Yk Fi=2+YK,F

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Fibonacci Heaps

Proof of Key Lemma

> Lemma: Let x be a node with degree k, and let y1, .., v«
denote the children of x in the order in which they were linked

to x. Then:
0 if i=1
degree(y;) >
greely)) 2 {i—2 if i >2
> Proof:
1. When y; is linked to x, y1, ..., yi—1 already linked to x,

= degree(x) =i—1
= degree(y;) = i — 1 since we only link nodes of equal degree (in
CONSOLIDATE)

2. Since then, y; has lost at most one child (or else,
CASCADING-CUT will be triggered)

3. Thus, degree(y;) =i—1ori—2

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 68 /83

Fibonacci Heaps

Proof of Key Lemma

» Proof of Key Lemma::
1. For any node x, we show that size(x) > ¢degree)
a. size(x) = # node in subtree rooted at x
b. Taking base ¢ logs, degree(x) < log(size(x)) < log, N
2. Let s, be min size of tree rooted at any degree k node

a. Trivial to see that sp =1, 51 =2
b. sk monotonically increases with k

3. Let z be a degree k node and size(z)=si, and let y1,. .., yx be
children in order that they were linked to z

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 69 /83

Fibonacci Heaps

Proof of Key Lemma

> Proof of Key Lemma: :
4. Since y;.degree > i — 2 for i > 2, we have

k
size(x) > 5 >2+ Z Sy,.degree
=2

K
>24 Z Si_o (since y;.degree > i — 2)
=2

k
>24 Z F; (prove sk > Fyiobyinduction)
=2

= Fria > B~

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 70/83

Data Structures for Disjoint Sets

Data Structures for Disjoint Sets: Overview

» Some applications involve grouping n distinct elements into a
collection of disjoint sets

» Two important operations are then finding which set a given
element belongs to and uniting two sets

» This chapter explores methods for maintaining a data
structure that supports these operations

» Application: connected components in an undirected graph,
data clustering...

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 71/83

Data Structures for Disjoint Sets

Disjoint-Set Operations

> Letting x denote an object, we wish to support the following
operations:

1.

2.

MAKESET(x) creates a new set whose only member is x. We
require that x not already be in some other set

UNION(X, y) unites the dynamic sets that contain x and y, say Sy
and S, into a new set that is the union of these two sets, then
we remove sets S, and S, from S

FINDSET(x) returns a pointer to the representative of the
(unique) set containing x

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 72/83

Data Structures for Disjoint Sets

Running Time Analysis

» The running times of disjoint-set data structures shall be
analyzed in terms of two parameters:

1. n: the number of MAKESET operations
2. m: the total number of MAKESET, UNION, and FINDSET
operations

» The number of UNION operations is at most n — 1
» We have m > n

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 73/83

Data Structures for Disjoint Sets

Linked-List Representation

> A simple way to implement a disjoint-set data structure is to
represent each set by a linked list

» The first object in each linked list serves as its set's
representative

» Each object in the linked list contains a set member, a pointer
to the object containing the next set member, and a pointer
back to the representative

» Each list maintains pointers head, to the representative, and
tail, to the last object in the list

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 74/83

Data Structures for Disjoint Sets

Linked-List - Example

=y o @ l
(@) Yvy f g d Yyvy

c h e
head | > —1 >/ | head [
—)
|

N &
tail :l + T il I:

(b) YYYYYVY
ead [—
head [

HeE
NEE
Ji

3]
tail [

» The result of UNION(g, e), which appends the linked list
containing e to the linked list containing g. The representative
of the resulting set is . The set object for €'s list, S, is
destroyed

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Data Structures for Disjoint Sets

Running Time Analysis

» Both MAKESET and FINDSET only require O(1) time

> The worst case: suppose there are objects xi, x, ..., X,, We
first execute n MAKESET operations, then n — 1 UNION
operations: UNION(x2, x1),..., UNION(Xp, Xp—1)
1. The n MAKESET operations takes © (n) time
2. Because the i th UNION operation updates i objects, the total
number of objects updated by all n — 1 UNION operations is

z_:i:@(n2)

3. The amortized time of an operation is © (n)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 76 /83

Data Structures for Disjoint Sets

Smaller into Larger

> A weighted-union heuristic: suppose that each list also
includes the length of the list and that we always append the
shorter list onto the longer, breaking ties arbitrarily

» Theorem: Using the linked-list representation of disjoint sets
and the weighted-union heuristic, a sequence of m MAKESET,
UNION, and FINDSET operations, n of which are MAKESET
operations, takes O (m + n log n) time

» Proof?

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 77/83

Data Structures for Disjoint Sets

Smaller into Larger

> A weighted-union heuristic: suppose that each list also
includes the length of the list and that we always append the
shorter list onto the longer, breaking ties arbitrarily

» Theorem: Using the linked-list representation of disjoint sets
and the weighted-union heuristic, a sequence of m MAKESET,
UNION, and FINDSET operations, n of which are MAKESET
operations, takes O (m + n log n) time

» Proof?

For any k < n, after an object X's pointer has been updated
[log k] times, the resulting set must have at least k members.
So, each element will at most be updated [log n] times in
UNION operations.

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 77/83

Data Structures for Disjoint Sets

Disjoint-Set Forests

» In a faster implementation of disjoint sets, we represent sets
by rooted trees, with each node containing one member and
each tree representing one set

» The straightforward algorithms that use this representation
are no faster than ones that use the linked-list representation

a0 0
oRCIN®) o o
® ® & o ©

o (b)

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Data Structures for Disjoint Sets

Representing Sets as Trees

> MAKESET: create a tree with just one node

» FINDSET:follow parent pointers until we find the root of the
tree. The nodes visited on this simple path toward the root
constitute the find path

» UNION: cause the root of one tree to point to the root of the
other

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 79/83

Data Structures for Disjoint Sets

Heuristics to Improve the Running Time

» Union by rank: for each node, we maintain a rank, which is
an upper bound on the height of the node. In union by rank,
we make the root with smaller rank point to the root with
larger rank during a UNION operation

» Path compression: we use it during FINDSET operations to
make each node on the find path point directly to the root.
Path compression does not change any ranks

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 80/83

Data Structures for Disjoint Sets

Disjoint-Set Forests - Pseudocode |

MAKESET(x)
1 p[x] < x
2: rank[x] <0

UNION(x, y)
1. LINK(FINDSET(x), FINDSET(y))

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 81/83

Data Structures for Disjoint Sets

Disjoint-Set Forests - Pseudocode Il

LINK(x, y) FINDSET(x)
1. if rank[x] > rank[y] then 1. if x # p[x] then
2. ply] « x 2. p[x] < FINDSET(p[X])
3: else 3: end if
4 plx] <y 4: return p[x|
5. if rank[x] = rank[y] then
6: rankly] <— rankly] +1
7. end if
8: end if

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il

Data Structures for Disjoint Sets

Running Time Analysis

» Theorem: In general, amortized cost is O(a(n)), where a(n)
grows really, really, really slow
proof: Really, really, really long

» In any conceivable application of a disjoint-set data structure,
a(n) <4

Xiang-Yang Li and Haisheng Tan Advanced Data Structures Il 83/83

	Outline
	Binomial Heaps
	Fibonacci Heaps
	Data Structures for Disjoint Sets

