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Dynamic Programming

Dynamic programming, like the divide-and-conquer
method, solves problems by combining the solutions to
subproblems.

We typically apply dynamic programming to optimization
problems. Such problems can have many possible solutions.
Each solution has a value, and we wish to find a solution with
the optimal (minimum or maximum) value. We call such a
solution an optimal solution to the problem, as opposed to the
optimal solution, since there may be several solutions that
achieve the optimal value.
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Dynamic Programming

When developing a dynamic-programming algorithm, we
follow a sequence of four steps:
▶ Characterize the structure of an optimal solution.
▶ Recursively define the value of an optimal solution.
▶ Compute the value of an optimal solution, typically in a

bottom-up fashion.
▶ Construct an optimal solution from computed information.

(optional)
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Rod Cutting

Problem Description
Given a rod of length n inches and a table of prices pi for

i = 1,2, ...,n, determine the maximum revenue rn obtainable by
cutting up the rod and selling the pieces. Note that if the price
pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.
▶ pi is the price of rod of length i.
▶ A feasible solution: n = i1 + i2 + · · ·+ im, where ij is a

positive integer.
▶ Revenue rn = ∑m

j=1 pij .
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Example of Rod Cutting Problem

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

9 1 8 5 5 8 1

1 1 5 1 5 1 5 1 1 1 1 1 1

All the cases for n = 4.
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Analysis

We view a decomposition as consisting of a first piece of
length i cut off the left-hand end, and then a right-hand
remainder of length n− i. Only the remainder, and not the first
piece, may be further divided. We may view every
decomposition of a length-n rod in this way: as a first piece
followed by some decomposition of the remainder. We thus
obtain the following equation:

rn = max
1≤i≤n

(pi + rn−i).
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Recursive Top-down Implementation

Cut-Rod(p,n)
1: if n == 0 then return 0
2: q =−∞
3: for i = 1 to n do
4: q = max(q,p[i]+Cut-Rod(p,n− i))
5: return q

Cut-Rod is Inefficient
The problem is that Cut-Rod calls itself recursively over

and over again with the same parameter values, i.e., it solves
the same subproblems repeatedly.
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Cut-Rod is Inefficient
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Example: n=4.
2n nodes, 2n−1 leaves.

Let T(n) denote the total number of calls made to Cut-Rod
when called with its second parameter equal to n. We have
T(0) = 1 and T(n) = 1+∑n−1

j=0 T(j). That is

T(n) = 2n.
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Top-down with Memoization
Memoized-Cut-Rod(p,n)
1: let r[0..n] be a new array
2: for i = 0 to n do r[i] =−∞
3: return Memoized-Cut-Rod-Aux(p,n,r)
Memoized-Cut-Rod-Aux(p,n,r)
1: if r[n]≥ 0 then return r[n] // check whether r[n] has been

calculated.
2: if n == 0 then
3: q = 0
4: else
5: q =−∞
6: for i = 1 to n do
7: q = max(q,p[i]+Memoized-Cut-Rod-Aux(p,n− i,r))
8: r[n] = q
9: return q
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Bottom-up Version

Bottom-Up-Cut-Rod(p,n)
1: let r[0..n] be a new array
2: r[0] = 0
3: for j = 1 to n do
4: q =−∞
5: for i = 1 to j do
6: q = max(q,p[i]+ r[j− i])
7: r[j] = q
8: return r[n]

The bottom-up and top-down versions have the same
asymptotic running time Θ(n2).
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Reconstructing a Solution

Extended-Bottom-Up-Cut-Rod(p,n)
// Record the optimal value computed for each subproblem,
and a choice that led to the optimal value

1: let r[0..n] and s[0..n] be new arrays
2: r[0] = 0
3: for j = 1 to n do
4: q =−∞
5: for i = 1 to j do
6: if q < p[i]+ r[j− i] then
7: q = p[i]+ r[j− i]
8: s[j] = i
9: r[j] = q

10: return r and s
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Reconstructing a Solution

Print-Cut-Rod-Solution(p,n)
1: (r,s) = Extended-Bottom-Up-Cut-Rod(p,n)
2: while n > 0 do
3: print s[n]
4: n = n− s[n]
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Problem Description
Given a chain ⟨A1,A2, ...,An⟩ of n matrices, where for

i = 1,2, ...,n, matrix Ai has dimension pi−1×pi, fully
parenthesize the product A1A2...An in a way that minimizes the
number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we
are not actually multiplying matrices. Our goal is only to
determine an order for multiplying matrices that has the lowest
cost.
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Step 1: The Structure of an Optimal Parenthesization

For convenience, let us adopt the notation Ai..j, where i≤ j,
for the matrix that results from evaluating the product
AiAi+1...Aj.

When i < j, any parenthesization of the product AiAi+1...Aj
must split the product between Ak and Ak+1 for some integer k
in the range i≤ k < j.
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Step 1: The Structure of an Optimal Parenthesization

The optimal substructure of the optimal parenthesization
problem is as follows:

If an optimal parenthesization of AiAi+1...Aj splits the
product between Ak and Ak+1, the parenthesization of the
”prefix” subchain AiAi+1...Ak within this optimal
parenthesization of AiAi+1...Aj must be an optimal
parenthesization of AiAi+1...Ak.

Thus, we can build an optimal solution to an instance of
the matrix-chain multiplication problem by splitting the
problem into two subproblems.
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Step 2: A Recursive Solution

The subproblems are to determining the minimum cost of a
parenthesization of AiAi+1...Aj for 1≤ i≤ j≤ n.

Let m[i, j] be the minimum number of scalar multiplications
needed to compute the matrix Ai..j, so m[1,n] is the cost of the
solution for the full problem.

Obtain the recursive equation of m[i, j] by the following
analysis:
▶ If i = j, the chain consists of just one matrix

Ai..i = Ai,m[i, i] = 0.
▶ If i < j, assumed that the optimal parenthesization splits

the product AiAi+1...Aj between Ak and Ak+1, i≤ k < j,
and each matrix is pi−1×pi, thus
m[i, j] = m[i,k]+m[k+1, j]+pi−1pkpj.
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Step 2: A Recursive Solution

So we obtain:

m[i, j] =
{

0 if i = j
mini≤k<j {m[i,k]+m[k+1, j]+pi−1pkpj} if i < j

For the full problem, m[1,n] is the cost of the optimal
solution.

In order to keep track of how to construct an optimal
solution, we define s[i, j] to be a value of k at which we can split
the product AiAi+1...Aj to obtain an optimal parenthesization
s[i, j] = k, such that:

m[i, j] = m[i,k]+m[k+1, j]+pi−1pkpj
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Step 3: Computing the Optimal Costs

There are relatively few subproblems: one problem for each

choice of i and j satisfying 1≤ i≤ j≤ n, or
(

n
2

)
+n = Θ

(
n2)

in all.
But each subproblems may be encountered many times in

different branches of the recursion tree.
We use a tabular, bottom-up approach to compute the

optimal cost.
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Step 3: Computing the Optimal Costs
The following pseudocode assumes that matrix Ai has

dimensions pi−1×pi for i = 1,2, ...,n.
The input is a sequence p = ⟨p0,p1, . . . ,pn⟩, where

length[p] = n+1.
The procedure uses an auxiliary table m[1..n,1..n] for

storing the m[i, j] costs.
An auxiliary table s[1..n−1,2..n] records which index of k

achieved the optimal cost in computing m[i, j] and it will be
used to construct an optimal solution.

Because the cost m[i, j] depends only on the costs of
computing matrix-chain products of fewer than j− i+1
matrices, the table m will be filled in a manner that
corresponds to solving the parenthesization problem on matrix
chains of increasing length.
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Step 3: Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)
1: n = p.length−1
2: let m[1..n,1..n] and s[1..n−1,2..n] be new tables
3: for i = 1 to n do
4: m[i, i] = 0
5: for l = 2 to n do
6: for i = 1 to n− l+1 do
7: j = i+ l−1, m[i, j] = ∞
8: for k = i to j−1 do
9: q = m[i,k]+m[k+1, j]+pi−1pkpj

10: if q < m[i, j] then
11: m[i, j] = q, s[i, j] = k
12: return m and s
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Step 3: Computing the Optimal Costs

Figure 1 illustrates this procedure on a chain of n = 6 matrices.
Since the definition of m[i, j] is only for i≤ j, only the portion of

the table m strictly above the main diagonal is used.
The figure shows the table rotated to make the main diagonal

run horizontally.
The matrix chain is listed along the bottom.
The minimum cost m[i, j] can be found at the intersection of lines

running northeast from Aj and northwest from Ai.
Each horizontal row in the table contains the entries for matrix

chains of the same length.
MATRIX-CHAIN-ORDER computes the rows from bottom to

top and from left to right within each row.
An entry m[i, j] is computed using the products pi−1pkpj for

k = i, i+1, ..., j−1 and all entries southwest and southeast from m[i, j].
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Figure: The m and s tables computed by MATRIX-CHAIN-ORDER
for n = 6 and the following matrix dimensions:

matrix A1 A2 A3 A4 A5 A6
dimension 30×35 35×15 15×5 5×10 10×20 20×25

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 24 / 63



Rod Cutting
Matrix-chain Multiplication

Elements of Dynamic Programming
Longest Common Subsequence

Optimal Binary Search Trees

Problem Description
Solution

Step 3: Computing the Optimal Costs

Computing m[2,5]:

m[2,5] = min


m[2,2]+m[3,5]+p1p2p5 = 0+2500+35 ·15 ·20 = 13,000
m[2,3]+m[4,5]+p1p3p5 = 2625+1000+35 ·5 ·20 = 7125
m[2,4]+m[5,5]+p1p4p5 = 4375+0+35 ·10 ·20 = 11,375

= 7125

The minimum number of scalar multiplications to multiply
the 6 matrices is m[1,6] = 15,125.

The running time of MATRIX-CHAIN-ORDER is Ω(n3)
and it requires Θ(n2) space to store the m and s tables.

Thus, MATRIX-CHAIN-ORDER is much more efficient
than the exponential-time method.
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Step 4: Constructing an Optimal Solution

An optimal solution can be constructed from the computed
information stored in the table s[1...n,1...n]

Each entry s[i, j] records the value of k such that the
optimal parenthesization of AiAi+1...Aj splits the product
between Ak and Ak+1.

Thus the final matrix multiplication in computing A1..n
optimally is A1..s[1,n] As[1,n]+1..n and the earlier matrix
multiplications can be computed recursively based on s[1,n] ,
since s[1,s[1,n]] determines the last matrix multiplication in
computing A1..s[1,n], and s[s[1,n]+1,n] determines the last
matrix multiplication in computing As[1,n]+1..n.
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Step 4: Constructing an Optimal Solution

The following procedure prints an optimal parenthesization of⟨
Ai,Ai+1, . . . ,Aj

⟩
, given the s table computed by MATRIX-CHAIN-

ORDER and the indices i and j.
PRINT-OPTIMAL-PARENS(s, i, j)
1: if i = j then
2: print “Ai”
3: else
4: print “(”
5: PRINT-OPTIMAL-PARENS(s, i,s[i, j])
6: PRINT-OPTIMAL-PARENS(s,s[i, j]+1, j)
7: print “)”

The initial call PRINT-OPTIMAL-PARENS(s,1,n) prints an
optimal parenthesization of

⟨
Ai,Ai+1, . . . ,Aj

⟩
.

In Figure 1, the call PRINT-OPTIMAL-PARENS(s,1,6) prints
the parenthesization ((A1 (A2A3))((A4A5)A6)).
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Two Key Ingredients

An optimization problem must have two key ingredients so that
it can apply dynamic programming:

optimal substructure and overlapping subproblems.
Time-memory Trade-off.
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Optimal Substructure

▶ A problem exhibits optimal substructure: optimal solutions
to a problem incorporate optimal solutions to related
subproblems, which we may solve independently.

▶ Whenever a problem exhibits optimal substructure, we
have a good clue that dynamic programming might apply.

▶ In dynamic programming, we build an optimal solution to
the problem from optimal solutions to subproblems.
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Discovering Optimal Substructure

1. A solution to the problem consists of making a choice, such as
choosing an initial cut in a rod (Rod Cutting) or choosing an
index at which to split the matrix chain (Matrix-chain
Multiplication). Making this choice leaves one or more
subproblems to be solved.

2. Supposing that for a given problem, you are given the choice
that leads to an optimal solution. You do not concern yourself
yet with how to determine this choice. You just assume that it
has been given to you.

3. Given this choice, you determine which subproblems ensue and
how to best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an
optimal solution to the problem must themselves be optimal by
using a “cut-and-paste” technique.
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Overlapping Subproblems

▶ Typically, the total number of distinct subproblems is a
polynomial in the input size. When a recursive algorithm
revisits the same problem repeatedly, we say that the
optimization problem has overlapping subproblems.

▶ In contrast, a problem for which a divide-and-conquer
approach is suitable usually generates brand-new problems
at each step of the recursion.

▶ Dynamic-programming algorithms typically take advantage
of overlapping subproblems by solving each subproblem
once and then storing the solution in a table where it can
be looked up when needed, using constant time per lookup.
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Example: Recursive-Matrix-Chain

Recursive-Matrix-Chain(p, i, j)
1: if i == j then
2: return 0
3: m[i, j] = ∞
4: for k = i to j−1 do
5: q = Recursive-Matrix-Chain(p, i,k)

+Recursive-Matrix-Chain(p,k+1, j)
+pi−1pkpj

6: if q < m[i, j] then
7: m[i, j] = q
8: return m[i, j]
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Recursion Tree of Recursive-Matrix-Chain(p,1,4)

Figure: The recursion tree for the computation of Recursive-Matrix-Chain(p,1,4)
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Memoized-Matrix-Chain
Memoized-Matrix-Chain(p)
1: n = p.length−1
2: let m[1..n,1..n] be a new table.
3: for i = 1 to n do
4: for j = i to n do
5: m[i, j] = ∞
6: return Lookup-Chain(m,p,1,n)
Lookup-Chain(m,p, i, j)
1: if m[i, j]< ∞ then
2: return m[i, j]
3: if i == j then
4: m[i, j] = 0
5: else
6: for k = i to j−1 do
7: q = Recursive-Matrix-Chain(p, i,k)

+Recursive-Matrix-Chain(p,k+1, j)+pi−1pkpj
8: if q < m[i, j] then
9: m[i, j] = q
10: return m[i, j]
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Problem Description

Subsequence
Given a sequence X = ⟨x1,x2, ...,xm⟩, another sequence

Z = ⟨z1,z2, ...,zk⟩ is a subsequence of X if there exists a strictly
increasing sequence ⟨i1, i2, ..., ik⟩ of indices of X such that for all
j = 1,2, ...,k, we have xij = zj

Example: Z = ⟨B,C,D,B⟩ is a subsequence of
X = ⟨A,B,C,B,D,A,B⟩ with corresponding index sequence
⟨2,3,5,7⟩

Common Subsequence
Given two sequences X and Y, we say that a sequence Z is

a common subsequence of X and Y if Z is a subsequence of both
X and Y.
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Problem Description

Subsequence
Given a sequence X = ⟨x1,x2, ...,xm⟩, another sequence

Z = ⟨z1,z2, ...,zk⟩ is a subsequence of X if there exists a strictly
increasing sequence ⟨i1, i2, ..., ik⟩ of indices of X such that for all
j = 1,2, ...,k, we have xij = zj

Example: Z = ⟨B,C,D,B⟩ is a subsequence of
X = ⟨A,B,C,B,D,A,B⟩ with corresponding index sequence
⟨2,3,5,7⟩

Common Subsequence
Given two sequences X and Y, we say that a sequence Z is

a common subsequence of X and Y if Z is a subsequence of both
X and Y.
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Problem Description

Problem Description:longest-common-subsequence(LCS)
Given two sequences X = ⟨x1,x2, ...,xm⟩ and

Y = ⟨y1,y2, ...,yn⟩,we wish to find a maximum-length common
subsequence of X and Y.
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Step 1: Characterizing a longest common subsequence

the i th prefix of X
Given a sequence X = ⟨x1,x2, ...,xm⟩, we define the i th

prefix of X, for i = 0,1, ...,m, as Xi = ⟨x1,x2, ...,xi⟩.

Theorem 15.1 (Optimal substructure of an LCS)
Let X = ⟨x1,x2, ...,xm⟩ and Y = ⟨y1,y2, ...,yn⟩ be sequences,

and let Z = ⟨z1,z2, ...,zk⟩ be any LCS of X and Y.
▶ if xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1

and Yn−1.
▶ if xm ̸= yn, then zk ̸= xm implies that Z is an LCS of Xm−1

and Y.
▶ if xm ̸= yn, then zk ̸= yn implies that Z is an LCS of X and

Yn−1.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39 / 63



Rod Cutting
Matrix-chain Multiplication

Elements of Dynamic Programming
Longest Common Subsequence

Optimal Binary Search Trees

Problem Description
Solution

Step 1: Characterizing a longest common subsequence

the i th prefix of X
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and Yn−1.
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Step 1: Characterizing a longest common subsequence

Proof
1) If zk ̸= xm, then we could append xm = yn to Z to obtain a

common subsequence of X and Y of length k+1,
contradicting the supposition. Thus, zk = xm = yn Suppose
a common subsequence W of Xm−1 and Yn−1 with length
greater than k−1.Then, appending xm = yn to W can
produce a contradiction.

2) If zk ̸= xm, then Z is a commom subsequence of Xm−1 and
Y. If there were a common subsequence W of Xm−1 and Y
with length greater than k,then W would also be a
commmon subsequence Xm and Y, contradicting the
assumption.

3) The proof is symmetric to 2).
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Step 2: A recursive solution

▶ if xm = yn, we must find an LCS of Xm−1 and Yn−1,then
appending xm = yn to this LCS yields an LCS of X and Y.

▶ if xm ̸= yn, two subproblems must be solved: finding an
LCS of Xm−1 and Y and finding an LCS of X and
Yn−1.The longer one is the answer.

▶ Let c[i, j] denote the length of an LCS of the sequence Xi
and Yj

c[i, j] =


0 if i = 0 or j = 0
c[i−1, j−1]+1 if i, j > 0 and xi = yj
max(c[i, j−1],c[i−1, j]) if i, j > 0 and xi ̸= yj

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 41 / 63



Rod Cutting
Matrix-chain Multiplication

Elements of Dynamic Programming
Longest Common Subsequence

Optimal Binary Search Trees

Problem Description
Solution

Step 3: Computing the length of an LCS

▶ Let b[i, j] points to the table entry corresponding to the
optimal subproblem solution chosen when computing c[i, j].

b[i, j] =


↖ if c[i, j] is decided by c[i−1, j−1]
↑ if c[i, j] is decided by c[i−1, j]
← if c[i, j] is decided by c[i, j−1]

▶ A dynamic programming
algorithm,LCS-LENGTH,computes the length of an LCS of
two sequences,X = ⟨x1,x2, ...,xm⟩ and Y = ⟨y1,y2, ...,yn⟩.

▶ The procedure returns the b and c tables; c[m,n] contains
the length of an LCS of X and Y.
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Step 3: Computing the length of an LCS

LCS-LENGTH(X,Y)
1: m = X.length
2: n = Y.length
3: let b[1..m,1..n] and c[0..m,0..n]

be new tables
4: for i = 1 to m do
5: c[i,0] = 0
6: for j = 0 to n do
7: c[0, j] = 0
8: for i = 1 to m do
9: for j = 1 to n do

10: if xi == yj then
11: c[i, j] = c[i−1, j−1]+1
12: b[i, j] = ”↖ ”
13: else if c[i−1, j]≥ c[i, j−1]

then
14: c[i, j] = c[i−1, j]
15: b[i, j] = ” ↑ ”
16: else
17: c[i, j] = c[i, j−1]
18: b[i, j] = ”← ”
19: return c and b
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Step 3: Computing the length of an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0
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Step 3: Computing the length of an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A ↑ ↑ ↑ ↖ ↖
0 0 0 0 1 ← 1 1

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0
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Step 3: Computing the length of an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A ↑ ↑ ↑ ↖ ↖
0 0 0 0 1 ← 1 1

2 B ↖ ↑ ↖
0 1 ← 1 ← 1 1 2 ← 2

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0
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Step 3: Computing the length of an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A ↑ ↑ ↑ ↖ ↖
0 0 0 0 1 ← 1 1

2 B ↖ ↑ ↖
0 1 ← 1 ← 1 1 2 ← 2

3 C ↑ ↑ ↖ ↑ ↑
0 1 1 2 ← 2 2 2

4 B 0

5 D 0

6 A 0

7 B 0
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Step 3: Computing the length of an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A ↑ ↑ ↑ ↖ ↖
0 0 0 0 1 ← 1 1

2 B ↖ ↑ ↖
0 1 ← 1 ← 1 1 2 ← 2

3 C ↑ ↑ ↖ ↑ ↑
0 1 1 2 ← 2 2 2

4 B ↖ ↑ ↑ ↑ ↖
0 1 1 2 2 3 ← 3

5 D ↑ ↖ ↑ ↑ ↑ ↑
0 1 2 2 2 3 3

6 A ↑ ↑ ↑ ↖ ↑ ↖
0 1 2 2 3 3 4

7 B ↖ ↑ ↑ ↑ ↖ ↑
0 1 2 2 3 4 4
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Step 3: Computing the length of an LCS

▶ The tables produced by LCS-LENGTH. Inputs are:
X = ⟨A,B,C,B,D,A,B⟩ Y = ⟨B,D,C,A,B,A⟩ .

▶ Since each table entry takes O(1) time to compute, the
running time of the procedure is O(mn).
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Step 4: Constructing an LCS

▶ The b table returned by LCS-LENGTH can be used to
construct an LCS.

▶ We begin at b[m,n] and trace through the table following
the arrows.

▶ A ”↖ ” in entry b[i, j] implies that xi = yj is an element of
the LCS.

▶ The elements of the LCS are encountered in reverse order
by this method.
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Step 4: Constructing an LCS

j 0 1 2 3 4 5 6
i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A ↑ ↑ ↑ ↖ ↖
0 0 0 0 1 ← 1 1

2 B ↖ ↑ ↖
0 1 ← 1 ← 1 1 2 ← 2

3 C ↑ ↑ ↖ ↑ ↑
0 1 1 2 ← 2 2 2

4 B ↖ ↑ ↑ ↑ ↖
0 1 1 2 2 3 ← 3

5 D ↑ ↖ ↑ ↑ ↑ ↑
0 1 2 2 2 3 3

6 A ↑ ↑ ↑ ↖ ↑ ↖
0 1 2 2 3 3 4

7 B ↖ ↑ ↑ ↑ ↖ ↑
0 1 2 2 3 4 4
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0 1 1 2 ← 2 2 2

4 B ↖ ↑ ↑ ↑ ↖
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Step 4: Constructing an LCS

PRINT-LCS(b,X, i, j)
1: if i == 0 or j == 0 then
2: return
3: if b[i, j] == ”↖ ” then
4: PRINT-

LCS(b,X, i−1, j−1)
5: printxi
6: else if b[i, j] == ” ↑ ” then
7:

PRINT-LCS(b,X, i−1, j)
8: else
9:

PRINT-LCS(b,X, i, j−1)

▶ The left recursive procedure
prints out an LCS of X and Y in
the proper, forward order

▶ The initial call is PRINT-
LCS(b,X,X.length,Y.length).

▶ The procedure takes time
O(m+n), since at least one of i
and j is decremented in each
stage of the recursion.
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Step 4: Constructing an LCS

Improving the code
▶ We can improve dynamic-programming algorithms on the

time or space it uses.
▶ Some changes can simplify the code and improve constant

factors but otherwise yield no asymptotic improvement in
performance.

▶ Others can yield substantial asymptotic savings in time
and space.
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Optimal Binary Search Trees

Problem Description
Formally, we are given a sequence K = ⟨k1,k2, . . . ,kn⟩ of n

distinct keys in sorted order (so that k1 < k2 < · · ·< kn), and we
wish to build a binary search tree from these keys. For each key
ki, we have a probability pi that a search will be for ki.

Some searches may be for values not in K, and so we also
have n+1 “dummy keys” d0,d1, . . . ,dn representing values not
in K. In particular, d0 represents all values less than k1, dn
represents all values greater than kn, and for i = 1,2, . . . ,n−1,
the dummy key di represents all values between ki and ki+1. For
each dummy key di, we have a probability qi that a search will
correspond to di.
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Optimal Binary Search Trees

Problem Description
Each key ki is an internal node, and each dummy key di is

a leaf. Every search is either successful (finding some key ki) or
unsuccessful (finding some dummy key di), and so we have
∑n

i=1 pi +∑n
i=0 qi = 1. The cost of a search is set as the number of

nodes examined. The expected cost of a search in T is

E[search cost in T] =
n
∑
i=1

(depthT(ki)+1) ·pi+
n
∑
i=0

(depthT(di)+1) ·qi
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Optimal Binary Search Trees

Problem Description
The expected cost of a search in T is

E[search cost in T] = 1+
n
∑
i=1

depthT(ki) ·pi +
n
∑
i=0

depthT(di) ·qi.

For a given set of probabilities, we wish to construct a binary
search tree whose expected search cost is the smallest. We call
such a tree an optimal binary search tree.
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i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

The expected search cost of the left one is 2.80.
The expected search cost of the right one is 2.75. This tree is
optimal.
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Step 1: The structure of an optimal binary search tree

▶ Any subtree of a binary search tree must contain keys in a
contiguous range ki, . . . ,kj, for some 1≤ i≤ j≤ n. A subtree
that contains keys ki, . . . ,kj must also have as its leaves the
dummy keys di−1, . . . ,dj.

▶ The optimal substructure is: if an optimal binary search
tree T has a subtree T′ containing keys ki, . . . ,kj then this
subtree T′ must be optimal as well for the subproblem with
keys ki, . . . ,kj and dummy keys di−1, . . . ,dj. Its correctness
can be proved by “cut-and-paste” argument.

▶ We can construct an optimal solution to the problem from
optimal solution to subproblems.
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Step 1: The structure of an optimal binary search tree

▶ Given keys ki, . . . ,kj one of these keys, say kr(i≤ r≤ j), will
be the root of an optimal subtree containing these keys.
The left subtree of the root kr contains the keys ki, . . . ,kr−1
and the right subtree contains the keys kr+1, . . . ,kj.

▶ Examining all candidate roots kr and determining all
optimal binary search trees containing and those containing
kr+1, . . . ,kj. Then we will find an optimal binary search
tree.

▶ One detail worth noting about “empty” subtrees: for keys
ki, . . . ,kj, we select ki as the root. Then a subtree
containing keys ki has no actual keys but does contain the
single dummy key di−1. The case of choosing kj as the root
is symmetrical.
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Step 2: A recursive solution

▶ Our subproblem is to finding an optimal binary search tree
containing the keys ki, . . . ,kj, where i≥ 1, j≤ n, and
j≥ i−1.

▶ Define e[i, j] as the expected cost of searching an optimal
binary search tree containing the keys. Our ultimate goal is
e[1,n].

▶ We discuss different cases to obtain the recurrence of e[i, j]
▶ When j = i−1, we have just the dummy key di−1, the

expected search cost is e[i, i−1] = qi−1.
▶ When j≥ i, select a root kr, i≤ r≤ j.
▶ The expected search cost of this subtree increases by the

sum of all the probabilities in the subtree.
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Step 2: A recursive solution

▶ This sum of probabilities for a subtree with key ki, . . . ,kj is
w(i, j) = ∑j

l=i pl +∑j
l=i−1 ql.

▶ e[i, j] = pr +(e[i,r−1]+w(i,r−1))+(e[r+1, j]+w(r+1, j))
▶ Note that w(i, j) = w(i,r−1)+pr +w(r+1, j), so we have

e[i, j] = e[i,r−1]+ e[r+1, j]+w(i, j).

▶

e[i, j] =
{qi−1 if j = i−1

min
i≤r≤j
{e[i,r−1]+ e[r+1, j]+w(i, j)} if i≤ j
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Step 2: A recursive solution

▶ The e[i, j] values give the expected search costs in optimal
binary search trees.

▶ To keep track of the structure of optimal binary search
trees, we define root[i, j], for 1≤ i≤ j≤ n, to be the index r
for which is the root kr of an optimal binary search tree
containing keys.
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Step 3: Computing the expected search cost
▶ We store the e[i, j] values in a table e[1..n+1,0..n].
▶ The first index needs to run to n+1 because existing a

subtree containing only the dummy key dn and we need to
compute and store e[n+1,n]. The second index needs to
start from 0 because in order to have a subtree containing
only the dummy key d0 and compute and store e[1,0].

▶ We use a table root[i, j], for recording the root of the
subtree containing keys ki, . . . ,kj.

▶ We store w(i, j) in a table w[1..n+1,0..n], where

w[i, j] = w[i, j−1]+pj +qj.

▶ Thus, we can compute the Θ(n2) values of w[i, j] in Θ(1)
time each.
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Optimal-BST

Optimal-BST(p,q,n)
1: for i = 1 to n+1 do
2: e[i, i−1] = qi−1
3: w[i, i−1] = qi−1
4: for l = 1 to n do
5: for i = 1 to n− l+1 do
6: j = i+ l−1
7: e[i, j] = ∞
8: w[i, j] = w[i, j−1]+pj +qj
9: for r = i to j do

10: t = e[i,r−1]+ e[r+1, j]+w[i, j]
11: if t < e[i, j] then
12: e[i, j] = t
13: root[i, j] = r
14: return e and root
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Tables computed by Optimal-BST
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Time complexity of Optimal-BST

▶ In the Optimal-BST procedure, for loops are nested three
loops and each loop index takes on at most n values.

▶ The loop indices do not have the same bounds as those in
Matrix-Chain-Order, but they are within at most 1 in all
directions.

▶ Thus, the Optimal-BST procedure takes Θ(n3) time, like
Matrix-Chain-Order.
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