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Dynamic Programming

Dynamic programming, like the divide-and-conquer
method, solves problems by combining the solutions to
subproblems.

We typically apply dynamic programming to optimization
problems. Such problems can have many possible solutions.
Each solution has a value, and we wish to find a solution with
the optimal (minimum or maximum) value. We call such a
solution an optimal solution to the problem, as opposed to the
optimal solution, since there may be several solutions that
achieve the optimal value.
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Dynamic Programming

When developing a dynamic-programming algorithm, we
follow a sequence of four steps:
» Characterize the structure of an optimal solution.
» Recursively define the value of an optimal solution.

» Compute the value of an optimal solution, typically in a
bottom-up fashion.

» Construct an optimal solution from computed information.
(optional)
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Rod Cutting

Problem Description
Given a rod of length n inches and a table of prices p; for
i=1,2,...,n, determine the maximum revenue r, obtainable by
cutting up the rod and selling the pieces. Note that if the price
pn for a rod of length n is large enough, an optimal solution
may require no cutting at all.
» p; is the price of rod of length i.
» A feasible solution: n =ij +iz +--- +iy, where ij is a
positive integer.

» Revenue r, = Zjn;l Di;-
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All the cases for n = 4.
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Analysis

We view a decomposition as consisting of a first piece of
length i cut off the left-hand end, and then a right-hand
remainder of length n —i. Only the remainder, and not the first
piece, may be further divided. We may view every
decomposition of a length-n rod in this way: as a first piece
followed by some decomposition of the remainder. We thus
obtain the following equation:

Tn = 1I£ia§Xn(pi + I'nfi)-
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Recursive Top-down Implementation

Cut-Rod(p,n)

: if n == 0 then return 0
2: q= —

3: fori=1ton do

4

5

—_

q = max(q,p[i] + Cut-Rod(p,n —1))
return q
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Recursive Top-down Implementation

Cut-Rod(p,n)

1:

if n == 0 then return 0

2: q=—

3: fori=1ton do
4:
5

q = max(q,p[i] + Cut-Rod(p,n —1))

: return q

Cut-Rod is Inefficient

The problem is that Cut-Rod calls itself recursively over

and over again with the same parameter values, i.e., it solves
the same subproblems repeatedly.
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Cut-Rod is Inefficient

Example: n=4.
2" nodes, 2%~ ! leaves.

Let T(n) denote the total number of calls made to Cut-Rod
when called with its second parameter equal to n. We have
T(0) =1 and T(n) = 1+ ¥ T(j). That is
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Top-down with Memoization

Memoized-Cut-Rod(p,n)

1: let r[0..n] be a new array

2: for i=0 to n do r[i] = —eo

3: return Memoized-Cut-Rod-Aux(p,n,r)
Memoized-Cut-Rod-Aux(p,n,r)

1: if r[n] > 0 then return r[n] // check whether r[n] has been

calculated.

if n == 0 then
q=0

else
q - —OQ

fori=1 ton do
q = max(q, p[i] + Memoized-Cut-Rod-Aux(p,n —1i,r))

rln] =q
return q
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ive Top-down Implementation
ion
p Version
Reconstructing a Solution

Bottom-up Version

Bottom-Up-Cut-Rod(p,n)
1: let r[0..n] be a new array
2: 1[0] =0

3: for j=1 to n do

4 q=—

5: fori=1toj do
6 q = max(q,pfi] +r[j — i)
o rfl=q

8: return r[n]
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Bottom-up Version

Bottom-Up-Cut-Rod(p,n)
1: let r[0..n] be a new array
2: I‘[O] =0

3: for j=1 to n do

4 q=—

5: fori=1toj do
6 q = max(q,pfi] +r[j — i)
= 1fil=q

8: return r[n|

The bottom-up and top-down versions have the same
asymptotic running time ©(n?).
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Rod Cutting

Reconstructing a Solution

Reconstructing a Solution

Extended-Bottom-Up-Cut-Rod(p,n)
// Record the optimal value computed for each subproblem,
and a choice that led to the optimal value
let r[0..n] and s[0..n] be new arrays
r[0] =0
for j=1 to n do
q = —OQ
fori=1 to j do
if q < p[i] +r[j —i] then
q=pli]+rfj—i]
s[i] =1
rfi] =q
return r and s

,_.
=
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Reconstructing a Solution

Print-Cut-Rod-Solution(p,n)

1. (r,s) = Extended-Bottom-Up-Cut-Rod(p,n)
2: while n >0 do

3: print s[n]

4: n=n—s[n]
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Matrix-chain Multiplication

Problem Description

Solution

Problem Description

Given a chain (Aq,As,...,A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;, fully
parenthesize the product AjAs...Ay in a way that minimizes the
number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we
are not actually multiplying matrices. Our goal is only to
determine an order for multiplying matrices that has the lowest
cost.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 1: The Structure of an Optimal Parenthesization

For convenience, let us adopt the notation A; j, where i <j,
for the matrix that results from evaluating the product
AiAi+1...Aj.

When i < j, any parenthesization of the product AjA; ;...A;
must split the product between Ay and Ay, for some integer k
in the range i <k <j.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 1: The Structure of an Optimal Parenthesization

The optimal substructure of the optimal parenthesization
problem is as follows:

If an optimal parenthesization of AjAi;q...A; splits the
product between Ay and Ay, 1, the parenthesization of the
"prefix” subchain AjAjy;...Ax within this optimal
parenthesization of AjA; ;...A; must be an optimal
parenthesization of AjA; ;...Ay.

Thus, we can build an optimal solution to an instance of
the matrix-chain multiplication problem by splitting the
problem into two subproblems.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 2: A Recursive Solution

The subproblems are to determining the minimum cost of a
parenthesization of AjA; ;... Aj for 1 <i<j<n.

Let ml[i,j] be the minimum number of scalar multiplications
needed to compute the matrix A; j, so m(1,n] is the cost of the
solution for the full problem.

Obtain the recursive equation of mli,j| by the following
analysis:

» If i =j, the chain consists of just one matrix
Ai..i = Ai,m[i,i] = 0

> If i <j, assumed that the optimal parenthesization splits
the product AjAi;q1...A; between Ay and Ay q,i <k <j,
and each matrix is p;_1 X p;, thus

mli,j] = mfi,k] + m[k+1,j] + pi—1pxp;-
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 2: A Recursive Solution

So we obtain:

st 0 ifi=j
= minj<yj {mfi, k] + mk +1,j] + pi_ipkpj} ifi<j

For the full problem, m[1,n] is the cost of the optimal
solution.

In order to keep track of how to construct an optimal
solution, we define sli,j] to be a value of k at which we can split
the product AjAi;1...A; to obtain an optimal parenthesization
s[i,j] =k, such that:
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

There are relatively few subproblems: one problem for each

choice of i and j satisfying 1 <i<j<n, or < ; > +n=0 (n2)
in all.

But each subproblems may be encountered many times in
different branches of the recursion tree.

We use a tabular, bottom-up approach to compute the

optimal cost.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

The following pseudocode assumes that matrix A; has
dimensions p;_1 x p; for i=1,2,...,n.

The input is a sequence p = (pg,P1,---,Pn), Where
length[p] =n+1.

The procedure uses an auxiliary table m[1..n,1..n] for
storing the mli,j] costs.

An auxiliary table s[1..n —1,2..n] records which index of k
achieved the optimal cost in computing m[i,j| and it will be
used to construct an optimal solution.

Because the cost mli,j] depends only on the costs of
computing matrix-chain products of fewer than j—i+1
matrices, the table m will be filled in a manner that
corresponds to solving the parenthesization problem on matrix
chains of increasing length.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

1: n=p.length—1

2: let m[l..n,1..n] and s[1..n—1,2..n] be new tables
3: fori=1ton do

4: m[i,i] =0

5: for 1=2 to n do

6: fori=1ton—1+1 do

7s j=i+1-1, m[i,j] =oe

8: fork=itoj—1do

9: q=mli, k] +m[k+1,j] + pi—1pkp;
10: if ¢ <mli,j] then

11: m[ivj] =q, S[iaj] =k

12: return m and s
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

Figure 1 illustrates this procedure on a chain of n = 6 matrices.

Since the definition of mli,j] is only for i < j, only the portion of
the table m strictly above the main diagonal is used.

The figure shows the table rotated to make the main diagonal
run horizontally.

The matrix chain is listed along the bottom.

The minimum cost mli,j] can be found at the intersection of lines
running northeast from A; and northwest from Aj;.

Each horizontal row in the table contains the entries for matrix
chains of the same length.

MATRIX-CHAIN-ORDER computes the rows from bottom to
top and from left to right within each row.

An entry mli,j] is computed using the products pi_1pxpj for

k=1i,i+1,...,j—1 and all entries southwest and southeast from ml[i, j].
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

Figure: The m and s tables computed by MATRIX-CHAIN-ORDER
for n =6 and the following matrix dimensions:

matrix ‘ A1 A2 A3 A4 A5 A6

dimension | 30x35 35x15 15x5 5x10 10x20 20x25
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 3: Computing the Optimal Costs

Computing m[2, 5]:

m([2,3] +m[4,5] + p1p3ps = 2625+ 1000+ 35-5-20 = 7125

m[2,2] +m[3,5] + p1paps = 0+ 2500 + 35 - 15 - 20 = 13,000
m(2,5] = min
m[2,4] + m[5,5] + p1paps = 4375 +0+35-10-20 = 11,375

="7125

The minimum number of scalar multiplications to multiply
the 6 matrices is m[1,6] = 15,125.

The running time of MATRIX-CHAIN-ORDER is Q(n?)
and it requires ®(n?) space to store the m and s tables.

Thus, MATRIX-CHAIN-ORDER is much more efficient
than the exponential-time method.
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 4: Constructing an Optimal Solution

An optimal solution can be constructed from the computed
information stored in the table s[1...n,1...n]

Each entry sli,j] records the value of k such that the
optimal parenthesization of AjA; ;...A; splits the product
between Ay and Ay,q.

Thus the final matrix multiplication in computing A p
optimally is Ay g[1,n] Ag[1,n)+1.n and the earlier matrix
multiplications can be computed recursively based on s[1,n] ,
since s[1,s[1,n]] determines the last matrix multiplication in
computing Ay g1 n), and s[s[1,n] +1,n] determines the last
matrix multiplication in computing Agp nj41.n-
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Matrix-chain Multiplication Pralbiemm Desedisiion

Solution

Step 4: Constructing an Optimal Solution

The following procedure prints an optimal parenthesization of
<A1,Ai+1, ... ,Aj>, given the s table computed by MATRIX-CHAIN-
ORDER and the indices i and j.

PRINT-OPTIMAL-PARENS(s, ,j)

1: if i=j then

2: print “A;”

3: else

4: print “(”

5: PRINT-OPTIMAL-PARENS(s, i,s[i, j])

6:  PRINT-OPTIMAL-PARENS(s,s[i,j] + 1,j)
T print “)”

The initial call PRINT-OPTIMAL-PARENS(s, 1,n) prints an
optimal parenthesization of <A1,Ai+1, ... ,Aj>.

In Figure 1, the call PRINT-OPTIMAL-PARENS(s, 1,6) prints
the parenthesization ((Al (A2A3)) ((A4A5)A6))
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Optimal Su ucture

Elements of Dynamic Pr amming .
> g Overlappi yproblems

Two Key Ingredients

An optimization problem must have two key ingredients so that
it can apply dynamic programming;:

optimal substructure and overlapping subproblems.
Time-memory Trade-off.
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Optimal Substructure

Elements of Dynamic Programming q v
S ¢ Y °g & Overlapping Subproblems

Optimal Substructure

» A problem exhibits optimal substructure: optimal solutions
to a problem incorporate optimal solutions to related
subproblems, which we may solve independently.

» Whenever a problem exhibits optimal substructure, we
have a good clue that dynamic programming might apply.

» In dynamic programming, we build an optimal solution to
the problem from optimal solutions to subproblems.
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Optimal Substructure

Elements of Dynamic Programming q v
S ¢ Y °g & Overlapping Subproblems

Discovering Optimal Substructure

1. A solution to the problem consists of making a choice, such as
choosing an initial cut in a rod (Rod Cutting) or choosing an
index at which to split the matrix chain (Matrix-chain
Multiplication). Making this choice leaves one or more
subproblems to be solved.

2. Supposing that for a given problem, you are given the choice
that leads to an optimal solution. You do not concern yourself
yet with how to determine this choice. You just assume that it
has been given to you.

3. Given this choice, you determine which subproblems ensue and
how to best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an
optimal solution to the problem must themselves be optimal by
using a “cut-and-paste” technique.
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Optimal Substructure

Elements of Dynamic Programming q v
Y S ) Overlapping Subproblems

Overlapping Subproblems

» Typically, the total number of distinct subproblems is a
polynomial in the input size. When a recursive algorithm
revisits the same problem repeatedly, we say that the
optimization problem has overlapping subproblems.

» In contrast, a problem for which a divide-and-conquer
approach is suitable usually generates brand-new problems
at each step of the recursion.

» Dynamic-programming algorithms typically take advantage
of overlapping subproblems by solving each subproblem
once and then storing the solution in a table where it can
be looked up when needed, using constant time per lookup.
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Optimal Substructure

Elements of Dynamic Programming q v
Y S ) Overlapping Subproblems

Example: Recursive-Matrix-Chain

Recursive-Matrix-Chain(p,1,j)
1: if i==j then

2 return 0

3: m[i,j] = o0

4: fork=1itoj—1 do

52 q = Recursive-Matrix-Chain(p,i, k)
+Recursive-Matrix-Chain(p,k +1,j)
+Pi—1PkPj

6: if @ < mli,j] then

T ml[i,j] =q

8: return mli,j]
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Optimal Substructure

Elements of Dynamic Pr amming O oG SbEe s

Memoized-Matrix-Chain

Memoized-Matrix-Chain(p)

1: n=p.length—1

2: let m[1..n,1..n] be a new table.
3: fori=1 to n do

4: for j=ito n do

5: mli,j] = oo

6: return Lookup-Chain(m,p,1,n)
Lookup-Chain(m, p, i,j)

1: if mli,j] < e then

2: return mli, j]

3: if i==j then

4: mli,j] =0

5: else

6: fork=itoj—1do

T: q = Recursive-Matrix-Chain(p,i, k)
+Recursive-Matrix-Chain(p,k+1,j) + pi—1PkPj

8: if g < mli,j] then

9: mlij = q

10: return mli,j]
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Problem Description

- o Solution
Longest Common Subsequence

Problem Description

Subsequence

Given a sequence X = (x1,X2,...,Xm), another sequence
Z = (z1,22,...,2x) is a subsequence of X if there exists a strictly
increasing sequence (iy,is,...,ix) of indices of X such that for all
J=1,2,...,k, we have x;, =z

Example: Z = (B,C,D,B) is a subsequence of
X =(A,B,C,B,D,A,B) with corresponding index sequence
(2,3,5,7)
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Problem Description

- o Solution
Longest Common Subsequence

Problem Description

Subsequence

Given a sequence X = (x1,X2,...,Xm), another sequence
Z = (z1,22,...,2x) is a subsequence of X if there exists a strictly
increasing sequence (iy,is,...,ix) of indices of X such that for all
J=1,2,...,k, we have x;, =z

Example: Z = (B,C,D,B) is a subsequence of
X =(A,B,C,B,D,A,B) with corresponding index sequence
(2,3,5,7)

Common Subsequence

Given two sequences X and Y, we say that a sequence Z is
a common subsequence of X and Y if Z is a subsequence of both
X and Y.
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Problem Description

- o Solution
Longest Common Subsequence

Problem Description

Problem Description:longest-common-subsequence(LCS)

Given two sequences X = (X1,X2, ...,Xy) and
Y = (y1,y2,...,¥n),we wish to find a maximum-length common
subsequence of X and Y.
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Problem Description

- - Solution
Longest Common Subsequence

Step 1: Characterizing a longest common subsequence

the i th prefix of X

Given a sequence X = (x1,X2,...,Xp), we define the i th
prefix of X, for i=0,1,...,m, as Xj = (x1,X2,...,Xj).
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Problem Description

- - Solution
Longest Common Subsequence

Step 1: Characterizing a longest common subsequence

the i th prefix of X

Given a sequence X = (x1,X2,...,Xp), we define the i th
prefix of X, for i=0,1,...,m, as Xj = (x1,X2,...,Xj).

Theorem 15.1 (Optimal substructure of an LCS)
Let X = (x1,%x2,...,xm) and Y = (y1,y2,...,yn) be sequences,
and let Z = (21,29, ...,2) be any LCS of X and Y.
» if Xy = yn, then zy = xy, =y, and Zy_ 1 is an LCS of Xy, 1
and Y,_1.
» if Xy # yn, then zy, # x, implies that Z is an LCS of X, 1
and Y.

» if X, # yu, then zy = v, implies that Z is an LCS of X and
Y, 1.
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Problem Description

- - Solution
Longest Common Subsequence

Step 1: Characterizing a longest common subsequence

Proof

1) If zy # xm, then we could append x,, =y, to Z to obtain a
common subsequence of X and Y of length k41,
contradicting the supposition. Thus, z = xy, = yn Suppose
a common subsequence W of X;, 1 and Y,_1 with length
greater than k —1.Then, appending x,, =y, to W can
produce a contradiction.

2) If zx # Xp, then Z is a commom subsequence of Xy, 1 and
Y. If there were a common subsequence W of X;,, 1 and Y
with length greater than k,then W would also be a
commmon subsequence X, and Y, contradicting the
assumption.

3) The proof is symmetric to 2).
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Problem Description

- - Solution
Longest Common Subsequence

Step 2: A recursive solution

» if x;,, = yu, we must find an LCS of X, and Y,_1,then
appending x;,, = yy to this LCS yields an LCS of X and Y.

» if X # yn, two subproblems must be solved: finding an
LCS of X;—1 and Y and finding an LCS of X and
Y,—1.The longer one is the answer.

» Let cli,j] denote the length of an LCS of the sequence X;
and Y;

0 ifi=0o0rj=0
C[la.]] = C[li ]-aJ — 1] +1 if l,J > (0 and Xi = Yj
max (c[i,j—1],c[i—1,j]) ifi,j >0 and x; #y;
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Problem Description

- - Solution
Longest Common Subsequence

Step 3: Computing the length of an LCS

» Let bli,]j] points to the table entry corresponding to the
optimal subproblem solution chosen when computing cli, j].

N if ¢fi,j] is decided by c[i—1,j—1]
bli,j]=<q 1 if c[i,j] is decided by c[i—1,]]
+ if ¢[i,j] is decided by cli,j—1]

> A dynamic programming
algorithm, LCS-LENGTH,computes the length of an LCS of
two sequences,X = (x1,X2,...,Xm) and Y = (y1,¥2,-..,¥n)-

» The procedure returns the b and c tables; ¢[m,n| contains
the length of an LCS of X and Y.
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Problem Description
Solution

Longest Common Subsequence

Step 3: Computing the length of an LCS

LCS-LENGTH(X, Y) 10:
1: m = X.length 11:
2: n=Y.length 12:
3: let b[1l..m,1..n] and c[0..m,0..n] 13:

if x; ==yj then
cli,jj=cli—-1,j—1]+1
bfij] =" X

else if cli—1,j] > c[i,j —1]

be new tables then
fori=1 to m do 14: c[i,j] = c[if 1,j]
cfi,0] =0 15: bli,j] =717
for j=0 to n do 16: else . .
el0.]=0 17; clif] = clii—1]
fori=1 to m do 18: bfi,j] ="«
for j=1 to n do 19: return c and b
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Problem Description

- - Solution
Longest Common Subsequence

Step 3: Computing the length of an LCS
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Problem Des

- - Solution
Longest Common Subsequence

Step 3: Computing the length of an LCS
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Problem Des

- - Solution
Longest Common Subsequence

Step 3: Computing the length of an LCS
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Problem Des

- - Solution
Longest Common Subsequence
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Step 3: Computing the length of an LCS

» The tables produced by LCS-LENGTH. Inputs are:
X=(A,B,C,B,D,A,B) Y=(B,D,C,A,B,A) .

» Since each table entry takes O(1) time to compute, the
running time of the procedure is O(mn).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms
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Step 4: Constructing an LCS

» The b table returned by LCS-LENGTH can be used to
construct an LCS.

» We begin at blm,n] and trace through the table following
the arrows.

> A 7”7 in entry b[i,j] implies that x; = yj is an element of
the LCS.

» The elements of the LCS are encountered in reverse order
by this method.

-Yang Li and Haisheng Tan Introduction to Algorithms
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Longest Common Subsequence

Problem Description
Solution

Step 4: Constructing an LCS

PRINT-LCS(b, X, i,j)

1:

2
3:
4

2 &

: else if bli,j] =="1" then

if i==0 or j==0 then » The left recursive procedure

r[et}lm prints out an LCS of X and Y in
if bli,j] =="<_" then

e the proper, forward order
LCS(b,X,i—1,j—1) » The initial call is PRINT-

printx; LCS(b, X, X.length, Y.length).

PRINT-LCS(b,X,i—1,j)

: else

PRINT-LCS(b,X,i,j— 1)

Xiang-Yang Li and Haisheng Tan

The procedure takes time
O(m+n), since at least one of i
and j is decremented in each
stage of the recursion.
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Improving the code

» We can improve dynamic-programming algorithms on the
time or space it uses.

» Some changes can simplify the code and improve constant
factors but otherwise yield no asymptotic improvement in
performance.

» Others can yield substantial asymptotic savings in time
and space.

eng Tan Introduction to Algorithms 49 /63
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Optimal Binary Search Trees

Problem Description

Formally, we are given a sequence K = (kj,ko,....k,) of n
distinct keys in sorted order (so that ky <ks <--- <k,), and we
wish to build a binary search tree from these keys. For each key
k;, we have a probability p; that a search will be for k;.

Some searches may be for values not in K, and so we also
have n+1 “dummy keys” dg,d,...,d, representing values not
in K. In particular, dy represents all values less than ky, d,
represents all values greater than ky, and fori=1,2,... n—1,
the dummy key d; represents all values between k; and k;j. 1. For
each dummy key d;, we have a probability q; that a search will
correspond to d;.

-Yang Li and Haisheng Tan Introduction to Algorithms
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Optimal Binary Search Trees

Problem Description

Each key k; is an internal node, and each dummy key d; is
a leaf. Every search is either successful (finding some key k;) or
unsuccessful (finding some dummy key d;), and so we have
YiiPi+Yiiodi = 1. The cost of a search is set as the number of
nodes examined. The expected cost of a search in T is

E[search cost in T] =) (depthy(k;)+1)-pi+ Y (depthr(di)+1)-q;

1 i=0

-

1
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Optimal Binary Search Trees

Problem Description
The expected cost of a search in T is

E[search cost in T] =1+ Z depthy(k;) - pi + Z depthr(d;) - gs.
= :

i i=0

For a given set of probabilities, we wish to construct a binary
search tree whose expected search cost is the smallest. We call
such a tree an optimal binary search tree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms
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il o0 1 2 3 4 5
Pi 015 0.10 0.05 0.10 0.20
q | 0.05 0.0 0.05 0.05 0.05 0.10

The expected search cost of the left one is 2.80.
The expected search cost of the right one is 2.75. This tree is
optimal.

-Yang Li and Haisheng Tan Introduction to Algorithms
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Step 1: The structure of an optimal binary search tree

» Any subtree of a binary search tree must contain keys in a
contiguous range ki, ..., k;, for some 1 <i<j<n. A subtree
that contains keys k;j,...,k; must also have as its leaves the
dummy keys di_1,...,d;.

» The optimal substructure is: if an optimal binary search
tree T has a subtree T’ containing keys ki, ...,k; then this
subtree T” must be optimal as well for the subproblem with
keys ki, ...,k; and dummy keys d;_1,...,d;. Its correctness
can be proved by “cut-and-paste” argument.

» We can construct an optimal solution to the problem from
optimal solution to subproblems.

-Yang Li and Haisheng Tan Introduction to Algorithms



Problem Description
Solution

Optimal Binary Search Trees

Step 1: The structure of an optimal binary search tree

» Given keys ki, ..., k;j one of these keys, say k (i <r <j), will
be the root of an optimal subtree containing these keys.
The left subtree of the root k; contains the keys k;j,..., k1
and the right subtree contains the keys k;;1,...,k;j.

» Examining all candidate roots k, and determining all
optimal binary search trees containing and those containing
kit1,...,kj. Then we will find an optimal binary search
tree.

» One detail worth noting about “empty” subtrees: for keys
ki,...,kj, we select k; as the root. Then a subtree
containing keys k; has no actual keys but does contain the
single dummy key d;_;. The case of choosing k;j as the root
is symmetrical.

-Yang Li and Haisheng Tan Introduction to Algorithms
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Step 2: A recursive solution

» Our subproblem is to finding an optimal binary search tree
containing the keys ki, ...,kj, where i > 1,j <n, and
j>i—1.

» Define e[i,j] as the expected cost of searching an optimal
binary search tree containing the keys. Our ultimate goal is
e[l,n].

» We discuss different cases to obtain the recurrence of eli, ]|

» When j=i—1, we have just the dummy key d;_1, the
expected search cost is e[i,i— 1] = qj_1.

» When j > i, select a root k;, i <r <j.

» The expected search cost of this subtree increases by the
sum of all the probabilities in the subtree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms
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Step 2: A recursive solution

» This sum of probabilities for a subtree with key k;,... k; is
w(ij) =X p+Y

> eli,j]=pr+ (e[i,r— 1]+ w(i,r—1))+ (e[r+1,j] + w(r+ 1,j))

» Note that w(i,j) =w(i,r—1)+p; +w(r+1,j), so we have

eli,j] =eli,r—1]+e[r+1,j] +w(i,j).

G ifj—i—1
efi,j] = min {eli,r — 1] +elr+1,j] +w(i,j)} ifi<]

i<r<j

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms
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Step 2: A recursive solution

» The e[i,j] values give the expected search costs in optimal
binary search trees.

» To keep track of the structure of optimal binary search
trees, we define rootl[i,j], for 1 <i<j<n, to be the index r
for which is the root k; of an optimal binary search tree
containing keys.
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Step 3: Computing the expected search cost

» We store the e[i,j] values in a table e[l..n+1,0..n].

» The first index needs to run to n+ 1 because existing a
subtree containing only the dummy key d, and we need to
compute and store en+1,n]. The second index needs to
start from 0 because in order to have a subtree containing
only the dummy key dy and compute and store e[1,0].

» We use a table rootl[i,j], for recording the root of the
subtree containing keys kj,...,k;j.

» We store w(i,j) in a table w[l..n+1,0..n], where

w(i,j] = w[i,j — 1] +pj +qj-

» Thus, we can compute the ®(n?) values of wli,j] in ®(1)
time each.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms
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Optimal-BST

Optimal-BST(p,q,n)

1: fori=1ton-+1do

2: e[i,i—l]:qi,l

3: W[i,ifu =qi—-1

4: for1=1 to n do

5: fori=1ton—1+1do

6: j=i+1-1

7 e[i,j] =

8: wli,j] = wli,j — 1] +pj +qj
9: forr=1ito j do

10: t=eli,r — 1] +e[r+1,j] +w[i,j]
11: if t < eli,j] then

12: eli,jl =t

13: root[i,j] =1

14: return e and root

Introduction to Algorithms
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Time complexity of Optimal-BST

» In the Optimal-BST procedure, for loops are nested three
loops and each loop index takes on at most n values.

» The loop indices do not have the same bounds as those in
Matrix-Chain-Order, but they are within at most 1 in all
directions.

» Thus, the Optimal-BST procedure takes ®(n?) time, like
Matrix-Chain-Order.

-Yang Li and Haisheng Tan Introduction to Algorithms
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