Introduction to Algorithms
Topic 6-2 : Greedy Algorithm

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

-Yang Li and Haisheng Tan Introduction to Algorithms

Outline

An Activity-Selection Problem
Elements of the Greedy Strategy
Huffman Codes

Matroids and Greedy Methods

A Task-scheduling Problem as a Matroid

-Yang Li and Haisheng Tan Introduction to Algorithms

Algorithms for optimization problems typically go through
a sequence of steps, with a set of choices at each step.

For many optimization problems, using dynamic
programming to determine the best choices is overkill;
simpler, more efficient algorithms will do.

A greedy algorithm always makes the choice that looks the
best at the current moment. That is, it makes a locally
optimal choice in the hope that this choice will lead to a
global optimal solution.

This chapter explores optimization problems for which
greedy algorithms provide optimal solutions.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem

Problem Description
Solution

Contents

An Activity-Selection Problem

duction to Algorithr

An Activity-Selection Problem

Problem Description
Solution

Problem Description

Suppose we have a set S = {aj,as,...,a,} of n proposed
activities that wish to use a resource, such as a lecture hall,
which can serve only one activity at a time.

Each activity a; has a start time s; and a finish time fj,
where 0 <sg; < f; < o0. If selected, activity a; takes place during
the half-open time interval [s;, fj).

Activities a; and a; are compatible if the intervals [s;,f;)
and [s,fj) do not overlap. That is, a; and a; are compatible iff
si > fj or s; > f;.

In the activity-selection problem, we wish to select a
maximum-size subset of mutually compatible activities. We
assume that the activities are sorted in monotonically
increasing order of finish time: f; <fy <.-- <fj.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem

Problem Description
Solution

Example

Consider the following set S of activities:

i1 2 3 456 7 8 9 10 11
ss[1 3 05 35 6 8 8 2 12
ffl4a 5 6 7 9 9 10 11 12 14 16

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Problem Description

Solution

For this example, the subset {ag,ag,a11} consists of mutually
compatible activities. It is not a maximum subset, however,
since the subset {a1,a4,ag,a11} is larger. In fact, {a1,a4,a8,a11}
is a largest subset of mutually compatible activities; another
largest subset is {ag,a4,a9,a11}.

Li and heng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Dynamic Programming Method

Define the set S = {ax € S: fi <sy < fi <sj}, it is the
subset of activities in S that can start after activity a; finishes
and finish before activity a; starts.

Add fictitious activities ag and ay11, and adopt the
conventions that fo =0 and sp;1 =0, thus 0 <i,j <n+1.

Therefore the subproblem is to select a maximum-size
subset of mutually compatible activities from S;;, for
0<i<j<n+1.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Dynamic Programming Method

The optimal substructure of this problem is as follows:
Suppose that an optimal solution Aj; to S;; includes activity ay.
Then the solutions Aj to Six and Ayj to Syj used within this
optimal solution to S;; must be optimal as well.

Thus, we can transform the problem of building an
maximumsize subset of mutually compatible activities in Syj
into finding maximum-size subsets Aj and Ay; of mutually
compatible activities in Sy and Sy;. Then forming the solution
Aij as

Aij =AU {ak} U Akj'

-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Dynamic Programming Method

Let cl[i,]j] be the number of activities in a maximum-size
subset of mutually compatible activities in Sy (have c[i,j] =0
for i >j)

For a nonempty subset S;j;, if ax is used in an optimal
solution, we have the recurrence (assumed k is given)

cli,j] = cli,k] +c[k,j]+1

But we don’t know the value of k and need to look up it in
the range from i+ 1 to j—1 to find the best. Thus

. 0 if Sij =,
cbil =9 max {cfi,k]+c[k,jj+1} if S #£2.

i<k<j

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Making the Greedy Choice

Based on the dynamic-programming process, we should write a
tabular, bottom-up algorithm based on the recurrence above.

Theorem 16.1
Consider any nonempty subproblem S;;, and let ay, be the
activity in S;; with the earliest finish time, then:

> Activity ap, is used in some maximum-size subset of
mutually compatible activities of Sjj;
» The subproblem S;;;, is empty, so that choosing a,, leaves

the subproblem S.,; as only one subproblem that may be
nonempty.

-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem

Problem Description
Solution

Prove the second part first. If Sy, is nonempty, there is
some activity such that f; <s, < fix <sp < fi,. Then ay is also in
Sij and its finish time is earlier than ay,, which contradicts our
choice of ay. So Siy is empty;

Then prove the first part. Suppose that Aj is a
maximum-size subset of mutually compatible activities of Sj;.
The activities in Aj; are ordered in monotonically increasing
order of finish time and let a) be the first activity.

» If a, = a,, we are done.

» If ay # an, construct the subset A{j =Aj;—{ax}U{am}.
The activities in A{j are disjoint and it has the same
number of activities as Ajj. So Aj; is a maximum-size subset
of mutually compatible activities of Sj; that includes a,.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Making the Greedy Choice

Theorem 16.1 shows some benefits of the solution:

| 2

>

It reduces the number of subproblems and the number of
choices compared with dynamic-programming solution;

It can solve each subproblem in a top-down fashion, rather
than the bottom-up manner typically used in dynamic
programming;;

Each subproblem consists of the last activities to finish,
and the number of such activities are different each other;

The finish times of the activities chosen over all
subproblems are strictly increasing over time;

The activity a,, is a greedy choice which maximizes the
amount of unscheduled time remaining.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

Recursive-Activity-Selector

Recursive-Activity-Selector (s, f, k,n)

1
2
3
4:
5
6
7

:m=k+1
: while m <n and s[m] < f[k] do

m=m+1 // find the earliest finish compatatible job
if m <n then
return {am } URecursive-Activity-Selector(s,f,m,n)

: else

return @

The initial call is Recursive-Activity-Selector(s,f,0,n+ 1)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

>lection Problem

Problem Description

Solution

ks S
o - 0 H ‘ H
o4 RECURSIVE-ACTIVITY-SELECTOR(s, £, 0, 11)
2 3 s RECURSIVE-ACTIVITY-SELECTORGS. . 1. 11)
30 6 [;
4 s 7
RECURSIVE-ACTIVITY-SELECTORGs. . 4. 11)
o3 = :
< [
6 5 9 — Lo
76 10 b o
a4
8§ 8 1 “
m=8§
RECURSIVE-ACTIVITY-SELECTOR(s. £ 8, 11) e ___9
9 8 12
P a] @ | g
0 2 14 i — |
i ay s
11 12 16
[a] @ | % m

ay] e | o] an

time

5
IS
oo |-
=

An Activity-Selection Problem
Problem Description
Solution

Time Complexity

Over all recursive calls, each activity is examined exactly
once in the while loop test of line 2.

Thus the running time of the call Recursive-Activity-
Selector(s,f,0,n+1) is O(n) (assuming that the activities have
already been sorted by finish times)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

An Iterative Greedy Algorithm

Greedy-Activity-Selector (s, f)
n = s.length
A= {al}
k=1
for m =2 to n do
if sim] > f[k] then

A=AU{an}
k=m
return A

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

An Activity-Selection Problem
Problem Description
Solution

An Iterative Greedy Algorithm

Greedy-Activity-Selector (s, f)

1: n=s.length
2: A= {al}
3: k=1

4: for m =2 to n do

5 if sim] > f[k] then
6 A=AU{an}
7 k=m

8: return A

By following the steps of Greedy-Activity-Selector, we
know that its result set A is the same with that of Recursive-
Activity-Selector.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Contents

Elements of the Greedy Strategy

Introduction to Algorithr

Elements of the Greedy Strategy

Elements of the Greedy Strategy

For a greedy algorithm, each choice seems the best at the
moment, but this heuristic strategy does not always produce an
optimal solution. To develop a greedy algorithm, we went
through the following steps:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution.

3. Prove that at any stage of the recursion, one of the optimal
choices is the greedy choice. Thus, it is always safe to make
the greedy choice.

4. Show that all but one of the subproblems induced by
having made the greedy choice are empty.

5. Develop a recursive algorithm that implements the greedy
strategy.

6. Convert the recursive algorithm to an iterative algorithm.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 19/54

Elements of the Greedy Strategy

Elements of the Greedy Strategy

More generally, we design greedy algorithms according to the
following steps:

1. Cast the optimization problem as one in which we make a
choice and are left with one subproblem to solve.

2. Prove that there is always an optimal solution to the
original problem that makes the greedy choice, so that the
greedy choice is always safe.

3. Demonstrate that, having made the greedy choice, what
remains is a subproblem with the property that if we
combine an optimal solution to the subproblem with the
greedy choice we have made, we arrive at an optimal
solution to the original problem.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Elements of the Greedy Strategy

» If we can demonstrate that the problem has two key
ingredients: the greedy-choice property and optimal
sub-structure, a greedy algorithm can be developed for it.

» Greedy-choice property: a globally optimal solution can be
arrived at by making a locally optimal (greedy) choice

» Optimal sub-structure: A problem exhibits optimal
substructure if an optimal solution to the problem contains
within it optimal solutions to subproblems

» Now we discuss the two ingredients in detail respectively

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Greedy-choice Property

» Greedy algorithms differ from dynamic programming in
some points:

» In dynamic programming, every choice at each step usually
depends on the solutions to subproblems; but the choice
made by a greedy algorithm only depends on choices so far.

» Dynamic-programming problems are solved in a bottom-up
manner; but a greedy strategy usually progresses in a
top-down fashion.

> We must prove that a greedy choice at each step yields a
globally optimal solution.

» The greedy-choice property often gains us some efficiency
in making our choice in a subproblem.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Optimal Substructure

» This property is a key ingredient of assessing the
applicability of dynamic programming as well as greedy
algorithms.

» Assumed that we arrived at a subproblem by having made
the greedy choice in the original problem.

» Then we need to argue that an optimal solution to the
subproblem, combined with the greedy choice already
made, yields an optimal solution to the original problem.

-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Greedy versus Dynamic Programming

» To avoid confusion of the greedy and dynamic-programming
strategies when deciding which one to choose for situations, we
should illustrate the subtleties between the two techniques.

» First, investigate two variants of a classical optimization
problem: 0— 1 knapsack problem and fractional knapsack
problem.

» 0 — 1 knapsack problem: A thief robbing a store finds n items;
the ith item is worth v; dollars and weighs w; pounds (vi, wj:
integer); he can carry at most W (W: integer) pounds. Which
items should he take in order to take as valuable a load as
possible?

» fractional knapsack problem: The setup is the same, but the
thief can take fractions of items, rather than having to make a
binary (0—1) choice for each item.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Greedy versus Dynamic Programming

>

>

To solve the fractional problem, we first compute the value
per pound vj/w; for each item;

Obeying a greedy strategy, the thief begins by taking as
much as possible of the item with the greatest value per
pound;

Then he takes the next greatest valuable item, and so forth
until he fills the knapsack;

Thus, by sorting the items by value per pound, the greedy
algorithm runs in O(nlgn) time.

The fractional knapsack problem has the greedy-choice
property.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Greedy versus Dynamic Programming

» But this greedy strategy does not work for the 0 — 1 knapsack
problem. To see the reason, consider the problem instance
illustrated in Figure 16.2(a).

» The value per pound of item 1 is 6 dollars per pound, which is
greater than that of either item 2 (5 dollars per pound) or item 3
(4 dollars per pound).

» However, the optimal solution takes items 2 and 3, leaving 1
behind. The two possible solutions that involve item 1 are both
suboptimal.

mm{ 30 $120
xmn?
uem 1
Z 20 $100

60 $100 Sl"O knapsack =$220
(a)

Xiang-Yang Li and Haisheng Tan

Elements of the Greedy Strategy

Greedy versus Dynamic Programming

» The reason is that taking item 1 the thief is unable to fill
his knapsack to capacity, and the empty space lowers the
effective value per pound of his load.

» But for the comparable fractional problem, the greedy
strategy, which takes item 1 first, does yield an optimal
solution, as shown in Figure 16.2(c).

uun 3 '*0 $120 I
mmZ 30[$120
20| $100
mml + +
2 2() $100 s
m $60 m $60
Sf)(l ‘Ml)(l sm) knapsack =$220 =$160 =$180

(b)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Elements of the Greedy Strategy

Greedy versus Dynamic Programming

» In the 0 — 1 problem, when we consider an item for
inclusion in the knapsack, we must compare the two
solutions to the subproblems in which the item is included
and excluded before we can make the choice.

» The problem formulated in this way gives rise to many
overlapping subproblems.

» Indeed, the 0 — 1 problem can be solved by dynamic
programming. How?

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Contents

Huffman Codes

Huffman Codes

Huffman Codes

» Huffman codes are a widely used and very effective
technique for compressing data; savings of 20% to 90% are
typical, depending on the characteristics of the data being
compressed.

» Consider the data to be a sequence of characters.

» Huffman’s greedy algorithm uses a table of the occurrence
frequencies of the characters to build up an optimal way of
representing each character as a binary string.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Example

> We wish to store a 100,000-character data file compactly.

» Only six different characters appear, and the character “a”
occurs 45,000 times.

‘ a b € d e f

Frequency (in thousands) | 45 13 12 16 9 5
Fixed-length codeword | 000 001 010 011 100 101
Variable-length codeword | 0 101 100 111 1101 1100

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Binary Character Code

» There are many ways to represent such a file of information.

» We design a binary character code wherein each character
is represented by a unique binary string.
» There are two coding ways:
> Fixed-length code: we need 3 bits to represent six
characters: a =000, b =001, ..., f =101. This method
requires 300,000 bits to code the entire file
» Variable-length code: it gives frequent characters short
codewords and infrequent characters long codewords. This

code requires
(45-1+13-3+12-3+16-34+9-4+5-4)-1000 = 224,000 bits

» So a variable-length code can do considerably better than a
fixed-length code.

-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Prefix Codes

» The codes in which no codeword is also a prefix of some
other codeword are called prefix codes.

» There is no loss of generality in restricting attention to
prefix codes.

> We concatenate the codewords representing each character
of the file for the purpose of encoding. For example, with
the variable-length prefix code of Figure 16.3, “abc” is
coded as 0-101-100 = 0101100.

» Prefix codes simplify decoding and the codeword that
begins an encoded file is unambiguous. For example, the
string 001011101 parses uniquely as 0-0-101-1101, which
decodes to “aabe”.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Binary Tree for Prefix Code

» A binary tree whose leaves are the given characters
provides a convenient representation for the prefix code

» The binary codeword for a character is the path from the
root to that character, where 0 means “go to the left child”
and 1 means “go to the right child”.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

The Cost of Prefix Code

» If C is the alphabet from which the characters are drawn
and all character frequencies are positive, then the tree for
an optimal prefix code has exactly |C| leaves, one for each
letter of the alphabet, and exactly |C|— 1 internal nodes;

» Given a tree T corresponding to a prefix code, we want to
compute the number of bits required to encode a file;

» Let f(c) denote the frequency of ¢ in the file and let dr(c)
denote the depth of ¢’s leaf in the tree (i.e. the length of

the codeword for character ¢, wherein ¢ is one character in
the alphabet C)

» Define the cost of the tree T as B(T) = Y. f(c¢)dr(c), which
ceC
is the number of bits required to encode a file.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Constructing a Huffman Code

» Huffman invented a greedy algorithm that constructs
Huffman code, which is an optimal prefix code;

» To clarify how the algorithm makes greedy choices, we
present the pseudocode first;

» The algorithm builds the tree T corresponding to the
optimal code in a bottom-up manner.

-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Huffman

Huffman(C)
1: n= ‘C|
2: Q=0C

3: fori=1ton—1do

4 allocate a new node z

5 z.left = x = Extract-Min(Q)
6: z.right = y = Extract-Min(Q)
T z.freq = x.freq + y.freq

8 Insert(Q,z)

9: return Extract-Min(Q)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Huffman Codes

Example for Huffman Codes

W [] 60 B @9 5 © EZEE @

Huffman Codes

Correctness of Huffman’s Algorithm

First show that the problem of determining an optimal prefix
code exhibits the greedy-choice and optimal-substructure
properties.

Lemma 16.2: Let C be an alphabet in which each character

c € C has frequency f[c|. Let x and y be two characters in C
having the lowest frequencies. Then there exists an optimal
prefix code for C in which the codewords for x and y have the
same length and differ only in the last bit.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39/54

Huffman Codes

Correctness of Huffman’s Algorithm

Lemma 16.3: Let C be a given alphabet with frequency c.freq
defined for each character ¢ € C. Let x and y be two characters
in C with minimum frequency. Let C’ be the alphabet C with
the characters x and y removed and a new character z added, so
that C' = C— {x,y} U{z}. Define f for C" as for C, except that
z.freq = x.freq +y.freq. Let T be any tree representing an
optimal prefix code for the alphabet C’. Then the tree T,
obtained from T’ by replacing the leaf node for z with an
internal node having x and y as children, represents an optimal
prefix code for the alphabet C.

Theorem 16.4: Procedure Huffman produces an optimal prefix
code.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Contents

Matroids and Greedy Methods

Introduction to Algorithr

Matroids and Greedy Methods

Matroid

A matroid is an ordered pair M = (S,.¥) satisfying the following
conditions.

1. S is a finite set.

2. . is a nonempty family of subsets of S, called the
independent subsets of S, such that if B € .# and A C B,
then A € .#. We say that .# is hereditary if it satisfies this
property. Note that the empty set & is necessarily a
member of .&.

3. f Ae ¥, Be .#, and |A| < |B|, then there is some element
x € B— A such that AU{x} € .#. We say that M satisfies
the exchange property.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Example of Matroids

Graphic matroid: Given an undirected graph G = (V,E), the
graphic matroid Mg = (Sqg,-#¢) satisfies the following
conditions:

» The set S is defined to be E, the set of edges of G.

> If A is a subset of E, then A € .7 if and only if A is
acyclic. That is, a set of edges A is independent if and only
if the subgraph G = (V,A) forms a forest.

Theorem 16.5: If G = (V,E) is an undirected graph, then
Mg = (Sq, #q) is a matroid.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Maximal Independent Subset

» Given a matroid M = (S,.#), for any x ¢ A, x is an
extension of A if AU{x} € .#;

» For example, if A is an independent set of edges in a
graphic matroid Mg, then edge e is an extension of A if
and only if e is not in A and the addition of e to A does
not create a cycle;

> If A is an independent subset in a matroid M, we say that
A is maximal if it has no extensions.

Theorem 16.6: All maximal independent subsets in a matroid
have the same size.

-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Spanning Tree

» Spanning tree: Consider a graphic matroid Mg for a
connected, undirected graph G, the spanning tree of G is a
free tree with exact |V| —1 edges that connects all the
vertices of G

» A matroid M = (S,.#) is weighted if there is an associated
weight function w that assigns a strictly positive weight
w(x) to each element x € S

» The weight function w of subset A is w(A) = Y w(x) for
x€A

any A CS.

-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Greedy Algorithms on a Weighted Matroid

>

| 2

| 2

An optimal subset of the matroid is a subset that is
independent and has the maximum possible weight;

It is always a maximal independent subset because the
weight w(x) of any element x € S is positive;
Minimum-spanning-tree problem: we are given a connected
undirected graph G = (V,E) and a length function w such
that w(e) is the (positive) length of edge e. We wish to find
a subset of the edges that connect all of the vertices
together and have the minimum total length.

To view this as a problem of finding an optimal subset of a
matroid, consider the weighted matroid Mg with weight
function w, where w(e) = wo—w(e) and wy is larger than
the maximum length of any edge.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Greedy Algorithms on a Weighted Matroid

» For any maximal independent subset A,
w(A) = (V|- 1)wo —w(A).

» So an independent subset that maximizes the quantity
w(A) must minimize w(A).

» Thus, any algorithm that can find an optimal subset A in
an arbitrary matroid can solve the minimum-spanning-tree
problem.

> Now we give a greedy algorithm that works for any
weighted matroid.

» Its input is a weighted matroid M = (S,.#) (w: positive
weight function)

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Greedy Algorithms on a Weighted Matroid

Greedy(M,w)

1: A=9o

2: Sort S[M] into monotonically decreasing order by weight w

3: for each x € S[M], taken in monotonically decreasing order
by weight w(x) do

4: if Au{x} € #[M] then

5: A=AuU {X}

6: return A

The algorithm is greedy because it considers each element x € S
in turn in order of monotonically decreasing weight and

immediately adds it to the set A being accumulated if AU{x} is
independent.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Matroids and Greedy Methods

Performance of The Algorithm

Lemma 16.7: (Matroids exhibit the greedy-choice property)
Suppose that M = (S,.#) is a weighted matroid with weight
function w and that S is sorted into monotonically decreasing
order by weight. Let x be the first element of S such that {x} is
independent if any such x exists. If x exists, then there exists
an optimal subset A of S that contains x.

Lemma 16.8: Let M = (S,.#) be any matroid. If x is an element
of S that is an extension of some independent subset A of S,
then x is also an extension of &.

Corollary 16.9: Let M = (S,.#) be any matroid. If x is an
element of S such that x is not an extension of @, then x is not
an extension of any independent subset A of S.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 49 /54

Matroids and Greedy Methods

Optimal-substructure property

Lemma 16.10: (Matroids exhibit the optimal-substructure
property) Let x be the first element of S chosen by Greedy for
the weighted matroid M = (S,.#). The remaining problem of
finding a maximum-weight independent subset containing x
reduces to finding a maximum-weight independent subset of the
weighted matroid M’ = (S',.#"), where ' ={y € S: {x,y} € £},
J'={BCS—{x}:BU{x} € .}, and the weight function for
M’ is the weight function for M, restricted to S’.

Theorem 16.11: (Correctness of the greedy algorithm on
matroids) If M = (S,.#) is a weighted matroid with weight
function w, then Greedy(M,w) returns an optimal subset.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

-scheduling Problem as a Matroid

Contents

A Task-scheduling Problem as a Matroid

Introduction to Algorithr

A Task-scheduling Problem as a Matroid

Task-scheduling problem

» Task-scheduling problem: Some unit-time tasks need to be
scheduled optimally on a single processor, each task has a
deadline, along with a penalty if the deadline is missed.

» A unit-time task is a job that requires exactly one unit of
time to complete.

» Schedule for S is a permutation of S specifying the
performing order of tasks.

» This problem can be solved using matroids

-Yang Li and Haisheng Tan Introduction to Algorithms

A Task-scheduling Problem as a Matroid

Task-scheduling problem

The problem of scheduling unit-time tasks with deadlines and
penalties for a single processor has the following inputs:
> aset S={aj,ag,...,a,} of n unit-time tasks;
» a set of n integer deadlines dy,ds,...,dy, such that each d;
satisfies 1 < d; < n and task a; is supposed to finish by time
d;; and
» a set of n nonnegative weights or penalties wi,ws,..., Wy,
such that we incur a penalty of w; if task a; is not finished
by time d; and we incur no penalty if a task finishes by its
deadline.

We are asked to find a schedule for S that minimizes the total
penalty incurred for missed deadlines.

-Yang Li and Haisheng Tan Introduction to Algorithms

A Task-scheduling Problem as a Matroid

Task-scheduling problem

We say that a set A of tasks is independent if there exists a
schedule for these tasks such that no tasks are late. Clearly, the
set of early tasks for a schedule forms an independent set of
tasks. Let .# denote the set of all independent sets of tasks.

Theorem 16.13: If S is a set of unit-time tasks with deadlines,
and .# is the set of all independent sets of tasks, then the
corresponding system (S,.#) is a matroid.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

	An Activity-Selection Problem
	Problem Description
	Solution

	Elements of the Greedy Strategy
	Huffman Codes
	Matroids and Greedy Methods
	A Task-scheduling Problem as a Matroid

