Introduction to Algorithms
Chapter 22 : Elementary Graph Algorithms

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

-Yang Li and Haisheng Tan Introduction to Algorithms

Outline

This chapter presents methods for representing a graph and for
searching a graph.

>

vvyyy

Section 22.1 discusses the two most common computational
representations of graphs: as adjacency lists and as
adjacency matrices.

Section 22.2 presents breadth-first search.

Section 22.3 presents depth-first search.

Section 22.4 topologically sorting a directed acyclic graph.
Section 22.5 finding the strongly connected components of
a directed graph

-Yang Li and Haisheng Tan Introduction to Algorithms

22.1 Representations of Graphs
Representations of Graphs
Example

Representations of Graphs

Two standard ways to represent a graph G = (V,E)

» adjacency-lists: Because the adjacency-list representation
provides a compact way to represent sparse graphs—those
for which |E| is much less than |V|>—it is usually the
method of choice.

» adjacency-matrix: When the graph is dense—|E| is close to
|[V|?—or when we need to be able to tell quickly if there is
an edge connecting two given vertices.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.1 Representations of Graphs
Representations of Graphs
Example

Two Representations of Graphs

Undirected Graph

(21 SK 5[e 1 0 1 o
S s [3TH 2N

S 2[H sIH 3
S el 1M 2

4 (] 1 1 0 1

wvi
=
[y
®
[y
®

(S0 [VR N Y
N
IS

-Yang Li and Haisheng Tan Introduction to Algorithms

22.1 Representations of Graphs

Representations of Graphs
Example

Two Representations of Graphs

Directed Graph

‘ 2| @ o o 1 o
)

° e 3 (%] 0 0 0 1 1

el
XIXXIXI 11X
1 E
> =Y
U
()
()
(]
[
()
()

AUV |WIN|F

-Yang Li and Haisheng Tan Introduction to Algorithms

22.1 Representations of Graphs
Representations of Graphs
Example

Adjacency Lists

Memory:

For both directed and undirected graphs, the adjacency-list
representation has the desirable property that the amount of
memory it requires is O(V+E).

Weighted graphs:

We can store the weight w(u,v) of the edge (u,v) € E with
vertex v in u’s adjacency list.
Disadvantage:

Adjacency-list provides no quicker way to determine
whether a given edge (u,v) is present in graph than to search
for v in the adjacency list u.Adj.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.1 Representations of Graphs

Representations of Graphs
Example

Adjacency Matrix

Memory:

The adjacency matrix of a graph requires ®(V?) memory.
Weighted graphs:

We can simply store the weight w(u,v) of the edge
(u,v) € E as the entry in row u and column v of the adjacency
matrix. If an edge does not exist, we can store a NIL, 0 or co.
For unweighted, adjacency matrix require only one bit per entry.
Disadvantage:

More memory required if the graph is sparse.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search
xample
Analysis

Breadth First Search

Breadth-first search is one of the simplest algorithms for
searching a graph and the archetype for many important graph
algorithms.

Given a graph G = (V,E) and a distinguished source vertex
s, breadth-first search systematically explores the edges of G to
“discover” every vertex at distance k from s before discovering
any vertices at distance k+ 1 until it finds every vertex that is
reachable from s. It also produces a “breadth-first tree” with
root s that contains all reachable vertices.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search Overview
BFS - Example
nalysis

Color of Nodes

To keep track of progress, breadth-first search colors each
vertex white, gray, or black.

All vertices start out white and may later become gray and
then black.

A vertex is discovered the first time it is encountered
during the search, at which time it becomes gray.

A black node means all its adjacent nodes have been
discovered.

Introduction to Algorithms

22.2 Breadth First Search

Analysis

Breadth First Tree

Breadth-first search constructs a breadth-first tree, initially
containing only its root, which is the source vertex s.

Whenever the search discovers a white vertex v in the
course of scanning the adjacency list of an already discovered
vertex u, the vertex v and the edge (u,v) are added to the tree.
We say that u is the predecessor or parent of v in the
breadth-first tree. Since a vertex is discovered at most once, it
has at most one parent.

We store the color of each vertex u € V in the attribute
u.color and the predecessor of u in the attribute u.7. If u has no
predecessor (for example, if u=s or u has not been discovered),
then u.wr = NIL. The attribute u.d holds the distance from the
sources to vertex u computed by the algorithm.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search

Breadth First Search

BFS(G,s)

1: for each ue G.V—{s} do
2 u.color = WHITE

3 u.d=oc0

4 u.w = NIL

5: s.color = GRAY

6: s.d=0

7: s.w = NIL

8: Q=0

9: enqueue(Q,s)

-Yang Li and Haisheng Tan

Analysis

10: while Q # @ do

11:
12:
13:
14:
15:
16:
17:

18:

u =dequeue(Q)
for each v € G.Adj[u] do
If v.color == WHITE
v.color = GRAY
vd=ud+1
v.T=u
enqueue(Q,v)
// contain gray nodes
u.color = BLACK

Introduction to Algorithms

2 Breadth First Overview
BFS - Example

- Analysis

Breadth First Search

duction to Algorithr

2 Breadth First Overview
BFS - Example

- Analysis

Breadth First Search

duction to Algorithr

22.2 Breadth First Search Overview
BFS - Example

- Analysis

Breadth First Search

&~ O
—
-
"

Introduction to Algorithr

22.2 Breadth First Search Overview
BFS - Example

- Analysis

Breadth First Search

83
=
<
—

Introduction to Algorithr

22.2 Breadth First Search Overview
BFS - Example

- Analysis

Breadth First Search

Introduction to Algorithr

22.2 Breadth First Search Overview
BFS - Example
*S - Analysis

Breadth First Search

~O
<
=
«

Li and Hai) Introduction to Algorithr

2 Breadth First Overview
- Example
- Analysis

Breadth First Search

slalo
| <

duction to Algorithr

2 Breadth First Overview
- Example
- Analysis

Breadth First Search

2 Breadth First Overview
- Example
- Analysis

Breadth First Search

22.2 Breadth First Search

Breadth First Search

1ple

BFS - Analysis

BFS(G,s)

1: for each ue G.V—{s} do
2 u.color = WHITE

3 u.d=oco

4 u.w = NIL

5: s.color = GRAY

6: s.d=0

7: s.m = NIL

8 Q=90

9: enqueue(Q,s)

-Yang Li and Haisheng Tan

10: while Q # @ do

11:
12:
13:
14:
15:
16:
17:
18:

u =dequeue(Q)
for each v e G.Adj[u] do
If v.color == WHITE
v.color = GRAY
v.d=ud+1
v.T =1
enqueue(Q,v)
u.color = BLACK

Introduction to Algorithms

22.2 Breadth First Search
3 \ple
BF'S - Analysis

Breadth First Search - Analysis

Aggregate Analysis

After initialization, breadth-first search never whitens a
vertex, and thus the test in line 13 ensures that each vertex is
enqueued at most once, and hence dequeued at most once, and
so the total time devoted to queue operations is O(V).

Because the procedure scans the adjacency list of each
vertex only when the vertex is dequeued. The total time spent
in scanning adjacency lists is O(E). The overhead for
initialization is O(V), and thus the total running time of the
BFS procedure is O(V +E).

-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search
3 \ple
BF'S - Analysis

Shortest Paths

Shortest path distance: The shortest-path distance 0(s,v) from
s to v is the minimum number of edges in any path from vertex
s to vertex v, if there is no path from s to v, then &(s,v) = oo.
Shortest path: A path of length &(s,v) from s to v is said to be
a shortest path from s to v.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search
3 \ple
BF'S - Analysis

Shortest Paths

Theorem 22.5: (Correctness of breadth-first search)

Let G = (V,E) be a directed or undirected graph, and
suppose that BFS is run on G from a given source vertex s € V.
Then, during its execution, BFS discovers every vertex v e V
that is reachable from the source s, and upon termination,

v.d = d(s,v) for all v € V. Moreover, for any vertex v # s that is
reachable from s, one of the shortest paths from s to v is a
shortest path from s to v.w followed by the edge (v.7,v).

-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search Overview
BFS - Example
BF'S - Analysis

Breadth First Trees

The procedure BFS builds a breadth-first tree as it
searches the graph. The tree corresponds to the & attributes.
More formally, for a graph G = (V,E) with source s, we define
the predecessor subgraph of G as Gz(Vy,Ez), where
Ve={veV:ivr#NIL}U{s} and Ez = {(v.@,v) :ve Vz—{s}}

The predecessor subgraph Gy is a breadth-first tree if V,
consists of the vertices reachable from s, and for all ve V,, G,
contains a unique simple path from s to v that is also a shortest
path from s to v in G. A breadth-first tree is in fact a tree,
since it is connected and |Ez| =|V;| —1. We call the edges in
E; tree edges.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search Overview
BFS - Example
BF'S - Analysis

Breadth First Trees

Lemma 22.6: When applied to a directed or undirected graph
G = (V,E), procedure BFS constructs 7 so that the predecessor
subgraph Gz(Vz,Ez) is a breadth-first tree.

Proof: Line 16 of BFS sets v.w = u if and only if (u,v) € E and
O(s,v) < oo, and thus V consists of the vertices in V reachable
from s. Since G from a tree, it contains a unique simple path
from s to each vertex in V. By applying Theorem 22.5
inductively, we conclude that every such path is a shortest path
in G.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.2 Breadth First Search

Breadth-first trees

PRINT-PATH(G,s,V)
1: if v==s then

2 print s

3 return

4: if v.mr == NIL then
5 print “no path from “s” to ” v “exists”
6

7

: else
PRINT-PATH(G,s,v.7)

-Yang Li and Haisheng Tan Introduction to Algorithms 19 /47

22.3 Depth First Search

Depth-first search

Strategy: to search deeper in the graph whenever possible.

Depth-first search explores edges out of the most recently
discovered vertex v that still has unexplored edges leaving it.
Once all of v’s edges have been explored, the search
“backtracks” to explore edges leaving the vertex from which v
was discovered. This process continues until we have discovered
all the vertices that are reachable from the original source
vertex.
If any undiscovered vertices remain, then depth-first search
selects one of them as a new source, and it repeats the search
from that source. The algorithm repeats this entire process
until it has discovered every vertex.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search DFS X
DFS - Analysis

Depth First Trees

The predecessor subgraph of a depth-first search:
Gz = (V,Ez) where Ez = {(v.7,v) : ve V and v.m # NIL}
The predecessor subgraph of a depth-first search forms a
depth-first forest comprising several depth-first trees. The edges
in E; are tree edges.
Vertices are colored during the search to indicate their state.
» Each vertex is initially white.
» It is grayed when it is discovered in the search.
» It is blackened when it is finished, that is, when its
adjacency list has been examined completely.
This technique guarantees that each vertex ends up in
exactly one depth-first tree, so these trees are disjoint.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
22.3 Depth First Search DFS - Example
DFS - Analysis

Depth First Trees

Besides creating a depth-first forest, depth-first search also
timestamps each vertex. Each vertex v has two timestamps: the
first timestamp v.d records when v is first discovered (and
grayed), and the second timestamp v.f records when the search
finishes examining v’s adjacency list (and blackens v).

These timestamps are integers between 1 and 2|V|. For
every vertex u, vertex u is WHITE before time d.u, GRAY
between time d.u and time d.f, and BLACK thereafter.

The procedure DFS below records when it discovers vertex
u in the variable u.d and when it finishes vertex u in the
variable u.f.

-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
22.3 Depth First Search DFS - Example
DFS - Analysis

Depth First Search

DFS-VISIT(G,u)

DFS(Q) 1: time = time+1
2: u.d = time
1: for each vertex ue G.V do
3: u.color = GRAY
2: u.color = WHITE .
o 7 — NIL 4: for each v € G.Adj[u] do
L= 5. if v.color == WHITE then
4: time=0 6: T —
5: for each vertex u € G.V do ' g
6: if u.color == WHITE then T DFS-VISIT(G, v)
7. DFS—VISIT(G,U) 8: u.color = BLACK
9: time = time+1
10: u.f = time

-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
22.3 Depth First S C DFS - Example
DFS - Analysis

Depth First Search - Example

duction to Algorithr

Overview
22.3 Depth First S C DFS - Example
DFS - Analysis

Depth First Search - Example

duction to Algorithms

Overview
22.3 Depth First S C DFS - Example
DFS - Analysis

Depth First Search - Example

duction to Algorithms

Overview
22.3 Depth First S C DFS - Example
DFS - Analysis

Depth First Search - Example

duction to Algorithms

Overview

22.3 Depth First S C DFS - Example

DFS - Analy

Depth First Search - Example

duction to Algorithr

Overview

22.3 Depth First S C DFS - Example

DFS - Analy

Depth First Search - Example

duction to Algorithr

Overview
22.3 Depth First S C DFS - Example
DFS - Anal 3

Depth First Search - Example

=
=
&
=
(@)

duction to Algorithr

Overview
22.3 Depth First S C DFS - Example
DFS - Anal 3

Depth First Search - Example

=
=
&
=
(@)

Overview
22.3 Depth First S C DFS - Example
DFS - Anal 3

Depth First Search - Example

©]
z
Q
=
@

Overview
22.3 Depth First S C DFS - Example
DFS - Anal 3

Depth First Search - Example

©]
z
Q
=
@

duction to Algorithr

Overview
22.3 Depth First S C DFS - Example
DFS - Anal 3

Depth First Search - Example

©]
z
Q
=
@

Overview
22.3 Depth First C DFS - Example
DFS - Analysis

Depth First Search - Example

©]
z
Q
=
@

Overview
22.3 Depth First Search DFS - Example
DFS - Analysis

Depth First Search

DFS-VISIT(G,u)

DFS(Q) 1: time = time+1
2: u.d = time
1: for each vertex ue G.V do
3: u.color = GRAY
2: u.color = WHITE .
o 7 — NIL 4: for each v € G.Adj[u] do
L= 5. if v.color == WHITE then
4: time=0 6: T —
5: for each vertex u € G.V do ' g
6: if u.color == WHITE then T DFS-VISIT(G, v)
7. DFS—VISIT(G,U) 8: u.color = BLACK
9: time = time+1
10: u.f = time

-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
22.3 Depth First Search DFS - Example
DFS - Analysis

Depth First Search - Analysis

Time complexity:The loops on lines 1-3 and lines 5-7 of DFS
take time O(V), exclusive of the time to execute the calls to
DFS-VISIT. As we did for breadth-first search, we use
aggregate analysis. The procedure DFS-VISIT is called exactly
once for each vertex v € V, since the vertex u on which
DFS-VISIT s invoked must be white and the first thing
DFS-VISIT does is paint vertex u gray. During an execution of
DFS-VISIT(G,v), the loop on lines 4-7 executes |Adj[v]| times.
Since Y ev|Adj[v]| = O(E), the total cost of executing lines 4-7
of DFS-VISIT is ®(E). The running time of DFS is therefore
O(V+E).

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
22.3 Depth First Search DFS - Example
DFS - Anal

Depth First Search - Analysis

6?67
Q@ o~ i

123 45 67 8 910111213141516
@ @xx)ywwz s @V @won

22.3 Depth First Search ample

X
DFS - Analysis

Properties of Depth First Search

The most basic property of depth-first search is that the
predecessor subgraph G, does indeed form a forest of trees,
since the structure of the depth-first trees exactly mirrors the
structure of recursive calls of DFS-VISIT.

Another important property of depth-first search is that
discovery and finishing times have parenthesis structure. If we
represent the discovery of vertex u with a left parenthesis “(u”
and represent its finishing by a right parenthesis “u)”, then the
history of discoveries and finishings makes a well-formed
expression in the sense that the parentheses are properly nested.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search ample

X
DFS - Analysis

Properties of Depth First Search

Theorem 22.7: In any depth-first search of a (directed or
undirected) graph G = (V,E), for any two vertices u and v,
exactly one of the following three conditions holds:

» the intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and
neither v nor u is a descendant of the other in the
depth-first forest,

» the interval [u.d,u.f] is contained entirely within the
interval [v.d,v.f], and u is a descendant of v in a depth-first
tree, or

» the interval [v.d,v.f] is contained entirely within the interval
[u.d,u.f], and v is a descendant of u in a depth-first tree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search

Properties of Depth First Search

Proof: We discuss the following cases:
» u.d < v.d: There are two subcases to consider

» v.d <u.f: In this case, v is a descendant of u, then the
interval [v.d,v,f] is entirely contained within the interval
[u.d,u.f]

» u.f<v.d: The intervals [u.d,u.f] and [v.d,v.f] are disjoint, so
neither vertex was discovered while the other was gray, and
neither vertex is a descendant of the other.

» v.d < u.d: This case is similar, with the roles of u and v
reversed in the above argument.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search DF¥ nple
DFS - Analysis

Properties of Depth First Search

Corollary 22.8: (Nesting of descendants’ intervals)

Vertex v is a proper descendant of vertex u in the
depth-first forest for a (directed or undirected) graph G if and
only if u.d < v.d < v.f < u.f.

Proof: Immediate from Theorem 22.7.

The next theorem gives another important characterization
of when one vertex is a descendant of another in the depth-first
forest.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search

Properties of Depth First Search

Corollary 22.8:(White-path theorem)

In a depth-first forest of a (directed or undirected) graph
G, vertex v is a descendant of vertex u if and only if at the time
u.d that the search discovers u, there is a path from u to v
consisting entirely of white vertices.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search DF¥ nple
DFS - Analysis

Properties of Depth First Search

Proof =: If v ==u, then the path from u to v contains just
vertex u, which is still white when we set the value of u.d. Now,
suppose that v is a proper descendant of u in the depth-first
forest. By Corollary 22.8, u.d < v.d, and so v is white at time
u.d. Since v can be any descendant of u, all vertices on the
unique simple path from u to v in the depth-first forest are
white at time u.d.

-Yang Li and Haisheng Tan Introduction to Algorithms

ample

22.3 Depth First Search X
DFS - Analysis

Properties of Depth First Search

<: Suppose that there is a path of white vertices from u to v at
time u.d, but v does not become a descendant of u in the
depth-first tree. Assume that every vertex other than v along
the path becomes a descendant of u. Let w be the predecessor
of v on the path, so that w is a descendant of u. By Corollary
22.8, w.f < u.f. Because v must be discovered after u is
discovered, but before w is finished, we have

u.d < v.d < w.f < u.f. Theorem 22.7 then implies that the
interval [v.d,v.f] is contained entirely within the interval
[u.d,u.f]. By Corollary 22.8, v must after all be a descendant of
u.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search ample

X
DFS - Analysis

Classification of Edge

The depth-first search can be used to classify the edges of
the input graph G = (V,E). Four edge types are defined in
terms of the depth-first forest G; produced by a depth-first
search on G.

> Tree edges are edges in the depth-first forest G;. Edge
(u,v) is a tree edge if v was first discovered by exploring
edge (u,v).

» Back edges are those edges (u,v) connecting a vertex u to
an ancestor v in a depth-first tree. We consider self-loops,
which may occur in directed graphs, to be back edges.

» Forward edges are those nontree edges (u,v) connecting a
vertex u to a descendant v in a depth-first tree.

» Cross edges are all other edges. They can go between
vertices in the same depth-first tree, as long as one vertex

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search DF¥ nple
DFS - Analysis

Classification of Edge

The DFS algorithm has enough information to classify
some edges as it encounters them.

The key idea is that each edge (u,v) can be classified by
the color of the vertex v that is reached when the edge is first
explored (except that forward and cross edges are not
distinguished):

» WHITE indicates a tree edge,
» GRAY indicates a back edge, and

» BLACK indicates a forward or cross edge.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search

Classification of Edge

The first case is immediate from the specification of the
algorithm.

The gray vertices always form a linear chain of descendants
corresponding to the stack of active DFS-VISIT invocations.
Exploration always proceeds from the deepest gray vertex, so
an edge that reaches another gray vertex reaches an ancestor.

The third case handles the remaining possibility; an edge
(u,v) is a forward edge if u.d < v.d and a cross edge if u.d > v.d.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search DF¥
DFS

Classification of Edge

In an undirected graph, there may be some ambiguity in
the type classification, since (u,v) and (v,u) are really the same
edge.

In such a case, the edge is classified as the first type in the
classification list that applies.

Forward and cross edges never occur in a depth-first search
of an undirected graph.

-Yang Li and Haisheng Tan Introduction to Algorithms

22.3 Depth First Search ample

X
DFS - Analysis

Classification of Edge

Theorem 22.10: In a depth-first search of an undirected graph
G, every edge of G is either a tree edge or a back edge.

Proof: Let (u,v) be an arbitrary edge of G, and suppose
without loss of generality that u.d < v.d. Then the search must
discover and finish v before it finishes u (while u is gray), since
v is on u’s adjacency list. If the first time that the search
explores edge (u,v), it is in the direction from u to v, then v is
undiscovered (white) until that time, for otherwise, the search
would have explored this edge already in the direction from v to
u. Thus, (u,v) becomes a tree edge. If the search explores (u,v)
first in the direction from v to u, then (u,v) is a back edge,
since u is still gray at the time the edge is first explored.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms 39/47

Overview
Example
22.4 Topological Sort Analysis

Topological Sort

DAG: a directed acyclic graph

A topological sort of a DAG G = (V,E) is a linear ordering of
all its vertices such that if G contains an edge (u,v), then u
appears before v in the ordering.

TOPOLOGICAL-SORT(G)

1. call DFS(G) to compute finishing times v.f for each vertex v.

2: as each vertex is finished, insert it onto the front of a linked

list.

3: return the linked list of vertices
Running time: We can perform a topological sort in time
O(V+E), since depth-first search takes ®(V+E) time and it
takes O(1) time to insert each of the |V| vertices onto the front
of the linked list.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview
Example
22.4 Topolog

Topological Sort

17/18

undershorts | 11/16

Y

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Introduction to Algorithms

22.4 Topological Sort Analysis

Topological Sort

Lemma 22.11: A directed graph G is acyclic if and only if a
depth-first search of G yields no back edges.

Theorem 22.12: TOPOLOGICAL-SORT produces a topological
sort of the directed acyclic graph provided as its input.

Hint: When exploring (u,v) € E, v can not be gray, or else it
will be a back edge. So, we must have v.f < u.f, which means v
will be sorted righthand side to (i.e., after) u.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.5 Strongly Connected Components

Strongly Connected Components

We now consider a classic application of depth-first search:
decomposing a directed graph into its strongly connected
components. This section shows how to do so using two
depth-first searches. Many algorithms that work with directed
graphs begin with such a decomposition.

A strongly connected component of a directed graph
G = (V,E) is a maximal set of vertices C C V such that for
every pair of vertices u and v in C, we have both u~» v and
v~ u; that is, vertices u and v are reachable from each other.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Overview

Example

Analysis
22.5 Strongly Connected Components

Strongly Connected Components

Cony—Cuney Qo X 5)
I\
o € — €D o €I (ea)

duction to Algorithms

Overview
Example
Analysis
22.5 Strongly Connected Components

Strongly Connected Components

Strongly-connected-components(G)

1:
2:
3:

call DFS(G) to compute finishing time u.f for each vertex u
compute G

call DFS(G™), but in the main loop of DFS, consider the
vertices in order of decreasing u.f (as computed in line 1)
output the vertices of each tree in the depth-first forest

formed in line 3 as a separate strongly connected compo-
nent

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

22.5 Strongly Connected Components

Strongly Connected Components

The idea behind this algorithm comes from a key property of
the component graph GS€C = (VSCC ESCC) which we define as
follows. Suppose that G has strongly connected components
C1,Ca,...,Ck. The vertex set V5 is {vy,va,vs,...,vi}, and it
contains a vertex v;j for each strongly connected component C;
of G. There is an edge (vi,vj) € Egcc if G contains a directed
edge (x,y) for some x € C; and some y € C;.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

Analysis
22.5 Strongly Connected Components

Strongly Connected Components

Lemma 22.13: Let C and C’ be distinct strongly connected
components in directed graph G = (V,E), let u,v € C,let

u',v/ € C/, and suppose that G contains a path u~»u’. Then G
cannot also contain a path v/ ~» v.

Lemma 22.14: Let C and C’ be distinct strongly connected
components in directed graph G = (V,E), Suppose that there is
an edge (u,v) € E, where u € C and v € C'. Then {(C) > {(C').
Corollary 22.15: Let C and C’ be distinct strongly connected
components in directed graph G = (V,E), Suppose that there is
an edge (u,v) € ET, , where u € C and v € C'. Then f(C) < f(C’).
Theorem 22.16: The strongly-connected-components procedure
correctly computes the strongly connected components of the
directed graph G provided as its input.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms

	22.1 Representations of Graphs
	Representations of Graphs
	Example

	22.2 Breadth First Search
	Overview
	BFS - Example
	BFS - Analysis

	22.3 Depth First Search
	Overview
	DFS - Example
	DFS - Analysis

	22.4 Topological Sort
	Overview
	Example
	Analysis

	22.5 Strongly Connected Components
	Overview
	Example
	Analysis

