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Basic definitions and properties

In this chapter, we shall examine two algorithms for solving the
minimum spanning-tree problem: Kruskal’s algorithm and Prim’s
algorithm.
» Section 23.1 introduces a “generic” minimum-spanning-tree
method that grows a spanning tree by adding one edge at a time.

P Section 23.2 gives two algorithms that implement the generic
method.
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Basic definitions and properties

Definition 1:

Given a connected, undirected graph G = (V,E) , for each edge
(u,v) € E, having a weight w(u,v) .

We wish to find an acyclic subset T C E that connects all of the
vertices and whose total weight is minimized.

w(T) = Z w(u,v)

(u,v)eT

Since T is acyclic and connects all of the vertices, it must form a
tree, which we call a spanning tree since it “spans” the graph G. We
call the problem of determining the tree T the minimum-spanning-tree
problem(MST).
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Example of a connected graph and MST
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Greedy Method for MST

23.1 Growing a minimum spanning tree Recognize safe edges
EIZE S3 4

Greedy Method for MST

The two algorithms (Kruskal’s Algorithm and Prim’s Algorithm)
we consider in this chapter run in time O(|E|log|V|) using a greedy
approach to the problem.

Greedy strategy:

Grows the minimum spanning tree one edge at a time and
manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum
spanning tree.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



Greedy Method for MST

23.1 Growing a minimum spanning tree Recognize safe edges
EIZE S3 4

Generic MST Algorithm

At each step we determine an edge (u,v) such that AU (u,v) is

still a subset of a MST and (u,v) is called a safe edge for A.

GENERIC-MST(G,w)

. A=0

2: while A does not form a spanning tree do

3 find an edge (u,v) that is safe for A
4: A=AU (u,v)
5

: return A
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Cut and Light Edge

Definition 2:
> A cut (S,V —S) of an undirected graph G = (V,E) is a partition
of V.

» Anedge (u,v) € E crosses the cut iff one of its endpoints is in §
and the otherisin V —S§

> An edge is a light edge crossing a cut if its weight is the
minimum of any edge crossing the cut

P> We call a cut respects a set A of edges if no edge in A crosses
the cut.
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Example of Cut and Light Edge
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Recognize safe edges

Theorem 23.1:

Let G = (V,E) be a connected, undirected graph with a
real-valued weight function w defined on E. Let A be a subset of E
that is included in some minimum spanning tree for G, let (S,V — )
be any cut of G that respects A, and let (u,v) be a light edge crossing
(S,V—5).

Then, edge (u,v) is safe for A.
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Recognize safe edges
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Recognize safe edges

Proof:

Suppose that 7" is an MST containing A but not the light edge
(u,v), then there is at least one edge on the path p that crosses the cut,
say(x,y).
1.form a new spanning tree 7”:

Then (x,y) is not in A. Because p is the unique path from u to v
in T, so removing (x,y) breaks T into two components. Adding («,v)
reconnects them to form a new spanning tree

T'= (T —{(x,y)}) U{(,v)}.
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Greedy Method for MST

23.1 Growing a minimum spanning tree R e

Recognize safe edges

2. show that 7’ is MST:
Since (u,v) is a light edge crossing (S,V — S) and (x,y) also
crosses this cut,w(u,v) < w(x,y). Therefore,

w(T") =w(T) — w(x,y) +w(u,v)
<w(T)

But 7 is a minimum spanning tree, so that w(7) < w(T").thus 7’
must be a minimum spanning tree also.
3. show that (u,v) is a safe edge for A:

We have A C T', since A C T and (x,y) ¢ A,thus
AU{(u,v)} CT'. Since T' is a MST, (u,v) is safe for A.
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Greedy Method for MST

23.1 Growing a minimum spanning tree Recognize safe edges

Corollary to Theorem 23.1

Corollary to theorem 23.1:

Let G = (V,E) be a connected, undirected graph with a
real-valued weight function w defined on E. Let A be a subset of £
that is included in some minimum spanning tree for G, and let
C = (V,,E.) be a connected component (tree) in the forest
Gy = (V,A).

If (u,v) is a light edge connecting C to some other component in
Gy, then (u,v) is safe for A.

Proof:

Since the cut (V,,V —V,) respects A, and (u,v) is a light edge

for this cut, (u,v) is safe for A.

Xiang-Yang Li and Haisheng Tan Introduction to Algorithms



23.2 The algorithms of Kruskal and Prim

Kruskal and Prim Algorithms

» In Kruskal’s algorithm, the set A forms a forest. The safe edge
added to A is always a least-weight edge in the graph that
connects two distinct components

» In Prim’s algorithm, the set A forms a single tree. The safe edge
added to A is always a least-weight edge connecting the tree to a
vertex not in the tree.
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Kruskal’s algorithm

. - . Prim’s algorith
23.2 The algorithms of Kruskal and Prim rim's algorithm

Kruskal’s algorithm

Kruskal’s algorithm finds a safe edge to add to the growing
forest by finding, of all the edges that connect any two trees in the
forest, an edge (u,v) of the least weight.

Let C; and C;, denote the two trees that are connected by (u,v).
Since (u,v) is a light edge, connecting C; to some other tree, (u,v) is
a safe edge for Cj.(Corollary 23.2)

Simply speaking, at each step Kruskal’s algorithm adds to the
forest an edge of the least possible weight (greedy).
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Kruskal’s algorithm

. - . Prim’s algorith
23.2 The algorithms of Kruskal and Prim rim's algorithm

Kruskal’s algorithm

MST-KRUSKAL(G,w)
1: A=0
for each vertex v € G.V do
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each edge (u,v) € G.E, taking in nondecreasing order by
weight w, do
if FIND-SET(u) # FIND-SET(v) then
A=AU{(u,v)}
UNION(u,v)
return A

2 2 F 9
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Kruskal’s algorithm

. - . Prim’s algorith
23.2 The algorithms of Kruskal and Prim rim’s algorithm

Kruskal’s algorithm
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Kruskal’s algorithm
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Kruskal’s algorithm
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Kruskal’s algorithm
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Kruskal’s algorithm
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23.2 The algorithms of Kruskal and Prim rim’s algorithm

Kruskal’s algorithm
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Kruskal’s algorithm
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23.2 The algorithms of Kruskal and Prim rim's algorithm

Kruskal’s algorithm

MST-KRUSKAL(G,w)
1: A=0
2: for each vertex v € G.V do

3 MAKE-SET(v) / O(V) MAKE-SET

4: sort the edges of G.E into nondecreasing order by weight w /I
O(ElogE)

5: for each edge (u,v) € G.E, taking in nondecreasing order by

weight w, do

6:  if FIND-SET(u) # FIND-SET(v) then

7: A=AU{(u,v)}

8: UNION(u, v) /ftotally O(E) FIND-SET and UNION
9: return A
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Kruskal’s algorithm
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23.2 The algorithms of Kruskal and Prim rim's algorithm

Kruskal’s Algorithm Complexity

Complexity:

Assume that we use the disjoint-set-forest implementation with
the union-by-rank and path-compression heuristics

Initializing the set A in line 1 takesO(1) time

Sort the edges in line 4 is O(E1gE) time

The for loop of lines 5-—8 performs O(E) FIND-SET and
UNION operations on the disjoint-set forest

Along with the |V| MAKE-SET operations, these take a total of
O(V+E)o(V)) time

Since a(|V|) = O(1gV) = O(IgE), the running time is O(EIgE)

Since |E| < |V|?,1g|E| = O(1gV) , the running time is O(Elg V)
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm

Prim’s algorithm operates much like Dijkstra’s algorithm for
finding shortest paths in a graph.

Prim’s algorithm has the property that the edges in the set A
always form a single tree.

Each step adds to the tree A a light edge that connects A to an
isolated vertex — one on which no edge of A is incident.

Simply speaking, at each step it adds to the tree an edge that
contributes the minimum amount possible to the tree’s weight

(greedy).
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm

MST-PRIM(G,w,r)

1: for each vertex u € G.V do

2 u.key = oo; /lu.key stores the minimum weight of any edge
connecting u to a vertex in the current tree

3: u.t = NIL

4: r.key=0

5: 0=G.V /I Q contains nodes not yet joining the tree

6: while O # 0 do

7 u=EXTRACT-MIN(Q) /ladding (u.7r,u) to the tree

8 for each v € G.Adj[u] do

9 if v e Q and w(u,v) < v.key then /lupdating keys

10: VT =1U

11: v.key =w(u,v)
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’salgorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm

MST-PRIM(G,w, r)

1: for each vertex u € G.V do

2 u.key = oo

3 u.t = NIL

4: r.key=0

5: 0=G.V  //BUILD-MIN-HEAP, O(V)

6: while Q # 0 do /IV loops

7 u=EXTRACT-MIN(Q) //0(log V) for each loop
8 for each v € G.Adj[u] do // /12E loops totally
9 if ve O and w(u,v) < v.key then

10: VT =1U

11: v.key = w(u,v) //IDECREASE-KEY
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Kruskal’s algorithm

23.2 The algorithms of Kruskal and Prim Brinisalyortin

Prim’s algorithm Complexity

Complexity:
Implement the min-priority queue Q as a binary min-heap:

Lines 1 - 5 : use the BUILD-MIN-HEAP to perform O(V)

The body of the while loop executes |V| times, since each
EXTRACT-MIN operation takes O(lg V) time, the total time if
O(VIgV) time. The for loop in lines 8 - 11 executes O(E) times
altogether, since the sum of the lengths of all adjacency lists is 2|E]|.

Line 11 involves an implicit DECREASE-KEY operation on the
min-heap, which a binary min-heap supports in O(Ig V) time.

Total time: O(VIgV +ElgV) = O(ElgV)
What about implementing the min-priority queue Q as a FIB-Heap?
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