

Introduction to Algorithms

Chapter 24 : Single-Source Shortest Paths

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

Outline of Topics

Shortest-paths Problem

The Bellman-Ford Algorithm

Single-source Shortest Paths in Directed Acyclic Graphs

Dijkstra's Algorithm

shortest-paths problem

In a **shortest-paths problem**, we are given a weighted, directed graph $G = (V, E)$, with weight function $w : E \rightarrow \mathbb{R}$ mapping edges to real-valued weights.

The **weight** $w(p)$ of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i).$$

We define the **shortest-path weight** $\delta(u, v)$ from u to v by

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \xrightarrow{p} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

A **shortest path** from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

Variants

In this chapter, we shall focus on the **single-source shortest-paths problem**: given a graph $G = (V, E)$, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$. The algorithm for the single-source problem can solve many other problems, including the following variants:

- ▶ **Single-destination shortest-paths problem:** Find a shortest path to a given destination vertex t from each vertex v .
- ▶ **Single-pair shortest-path problem:** Find a shortest path from u to v for given vertices u and v .
- ▶ **All-pairs shortest-paths problem:** Find a shortest path from u to v for every pair of vertices u and v . Although we can solve this problem by running a single-source algorithm once from each vertex, we usually can solve it faster.

Optimal substructure of a shortest path

Lemma 24.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph $G = (V, E)$ with weight function $w : E \rightarrow \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \leq i \leq j \leq k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

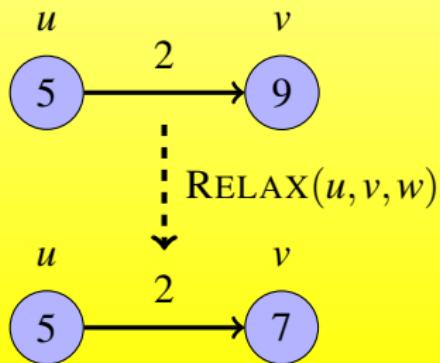
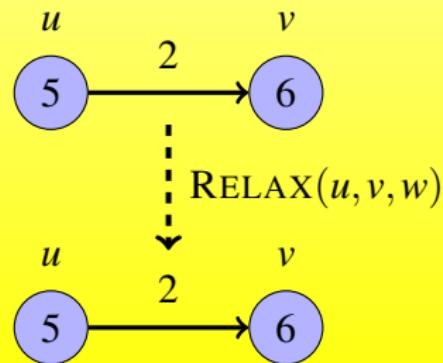
Relaxation on an edge (u, v)

$v.d$: a shortest path (distance) estimation from the source s .

Initially set $v.d = +\infty$ except $s.d = 0$, and $v.\pi = \text{nil}$.

RELAX(u, v, w)

- 1: **if** $v.d > u.d + w(u, v)$ **then**
- 2: $v.d = u.d + w(u, v)$
- 3: $v.\pi = u$ // update the predecessor



Properties of shortest paths and relaxation

- ▶ **Triangle inequality** (Lemma 24.10) For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$
- ▶ **Upper-bound property** (Lemma 24.11) We always have $v.d \geq \delta(s, v)$ for all vertices $v \in V$, and once $v.d$ achieves the value $\delta(s, v)$, it never changes.
- ▶ **No-path property** (Corollary 24.12) If there is no path from s to v , then we always have $v.d = \delta(s, v) = \infty$
- ▶ **Convergence property** (Lemma 24.14) If $s \rightsquigarrow u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v) , then $v.d = \delta(s, v)$ at all times afterward.

Properties of shortest paths and relaxation

- ▶ **Path-relaxation property** (Lemma 24.15) If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds **regardless of any other relaxation steps that occur**, even if they are intermixed with relaxations of the edges of p .
- ▶ **Predecessor-subgraph property** (Lemma 24.17) Once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s .

The Bellman-Ford Algorithm

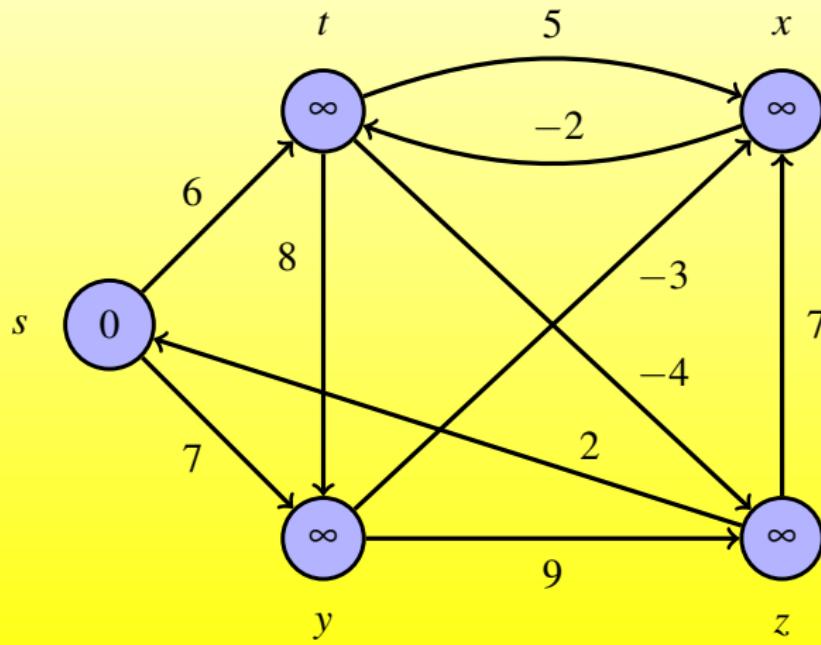
The **Bellman-Ford algorithm** solves the single-source shortest-paths problem in the general case in which edge weights **may be negative**. Given a weighted, directed graph $G = (V, E)$ with source s and weight function $w : E \rightarrow \mathbb{R}$, the Bellman-Ford algorithm returns a boolean value indicating **whether or not there is a negative-weight cycle that is reachable from the source**. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

BELLMAN-FORD

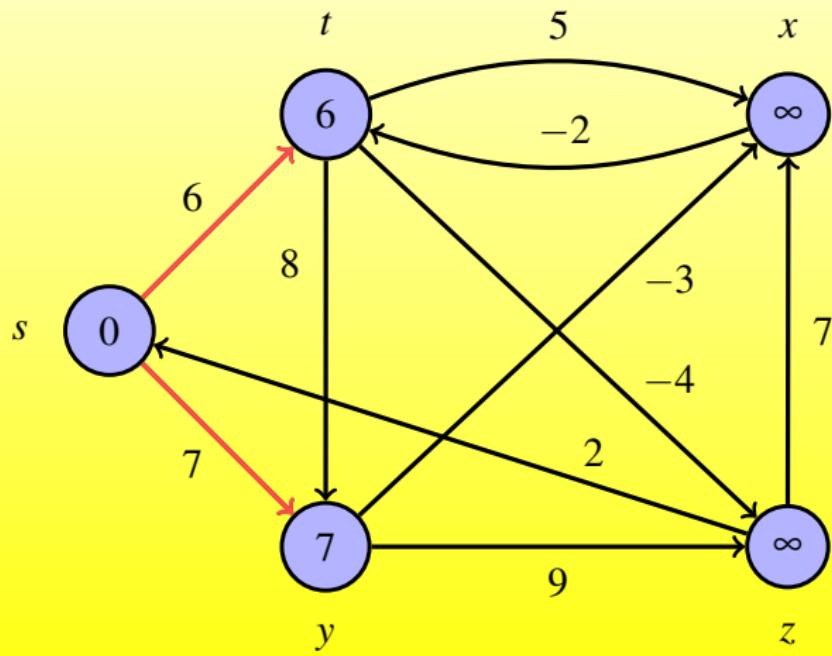
BELLMAN-FORD(G, w, s)

```
1: for each  $v \in V$  do  
2:    $v.d = \infty$ ;    $v.\pi = nil$   
3:    $s.d = 0$   
4:   for  $i = 1$  to  $|G.V| - 1$  do  
5:     for each edge  $(u, v) \in G.E$  do  
6:       RELAX( $u, v, w$ )  
7:   for each edge  $(u, v) \in G.E$  do  
8:     if  $v.d > u.d + w(u, v)$  then  
9:       return FALSE  
10:  return TRUE
```

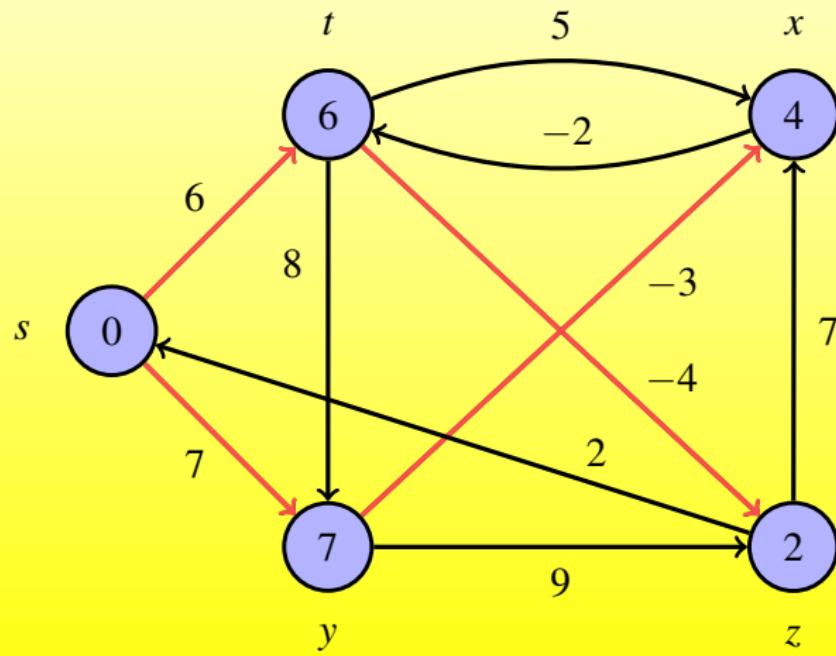
Example



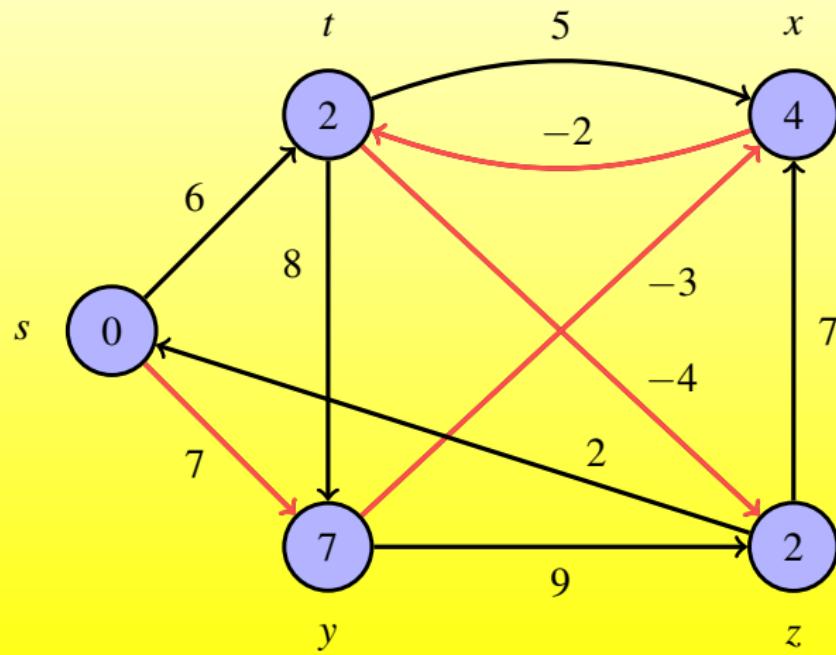
Example



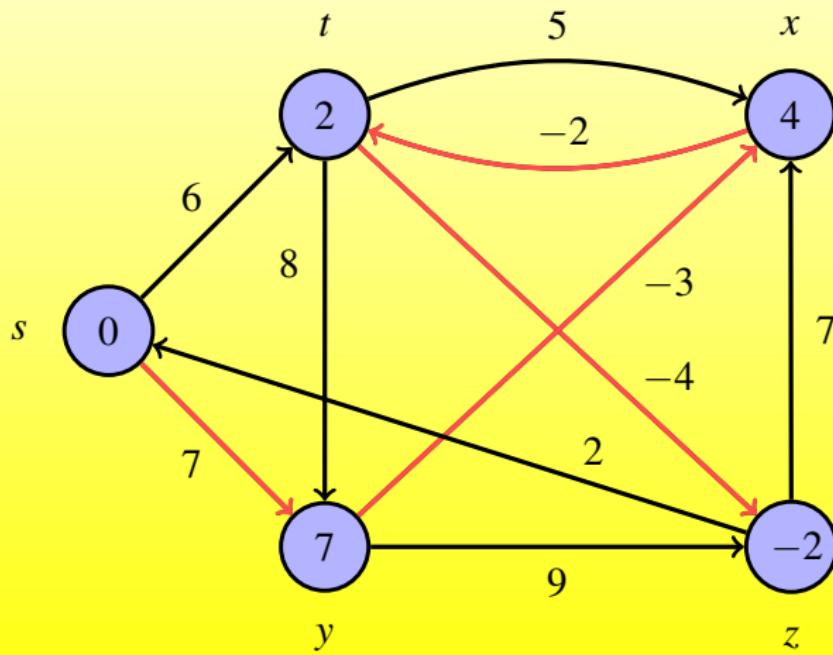
Example



Example



Example



BELLMAN-FORD : Analysis

Correctness? Time Complexity= $O(VE)$

BELLMAN-FORD(G, w, s)

```
1: for each  $v \in V$  do // initialization
2:    $v.d = \infty$ ;  $v.\pi = \text{nil}$ 
3:    $s.d = 0$ 
4: for  $i = 1$  to  $|G.V| - 1$  do // Process each edge  $|V| - 1$  times
5:   for each edge  $(u, v) \in G.E$  do // relax each edge once
6:     RELAX( $u, v, w$ )
7: for each edge  $(u, v) \in G.E$  do // check for a negative-weight cycle
8:   if  $v.d > u.d + w(u, v)$  then
9:     return FALSE
10: return TRUE
```

Single-source Shortest Paths in DAGs

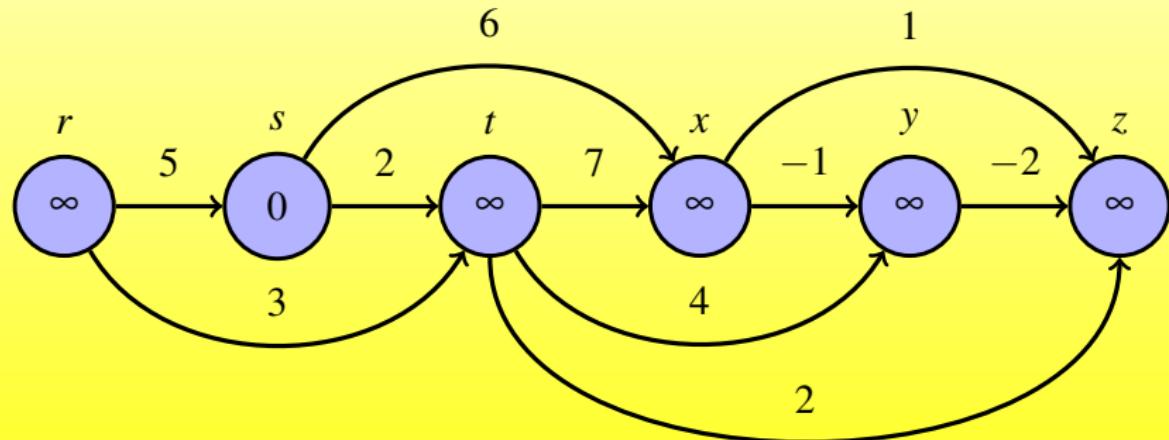
By relaxing the edges of a weighted DAG (directed acyclic graph) $G = (V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V + E)$ time.

Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

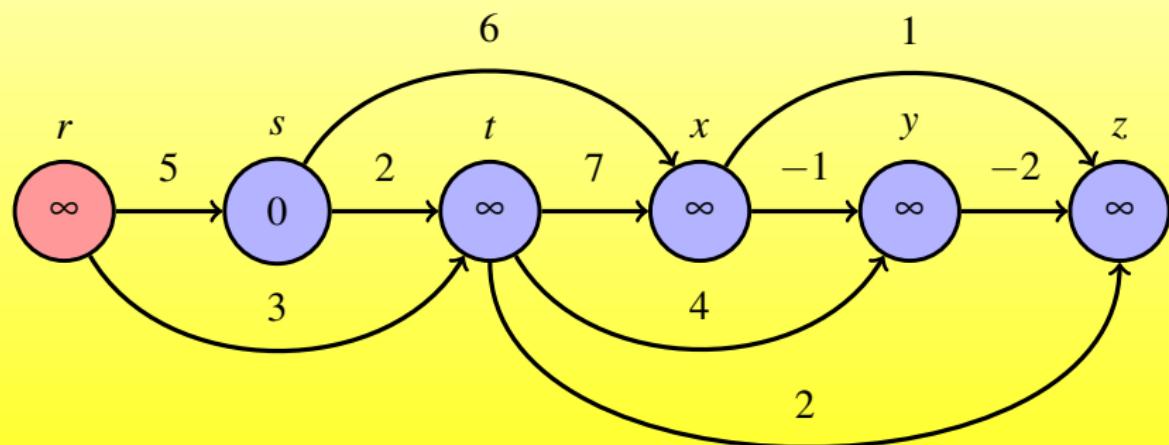
DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G, s)
- 3: **for** each vertex u , taken in topologically sorted order **do**
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: RELAX(u, v, w)

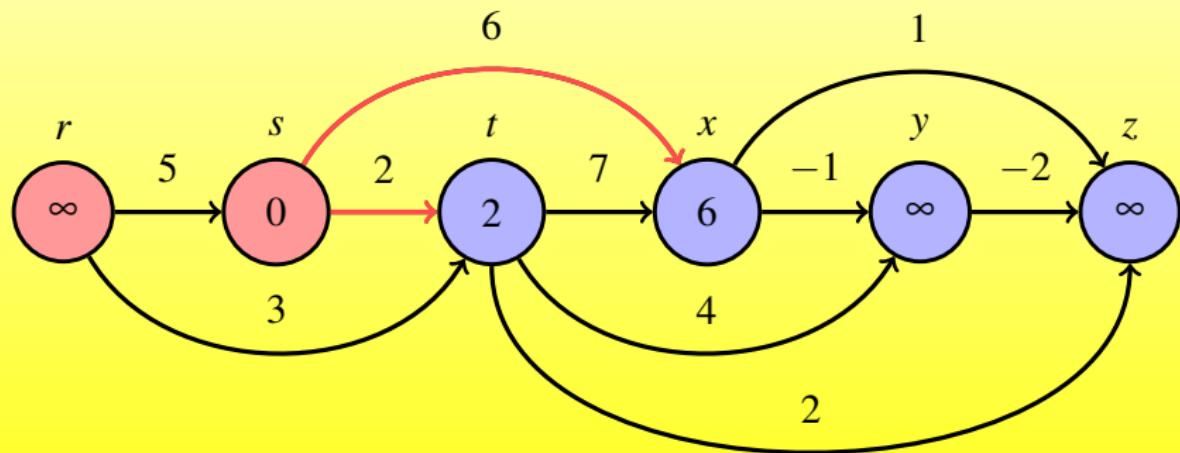
Example



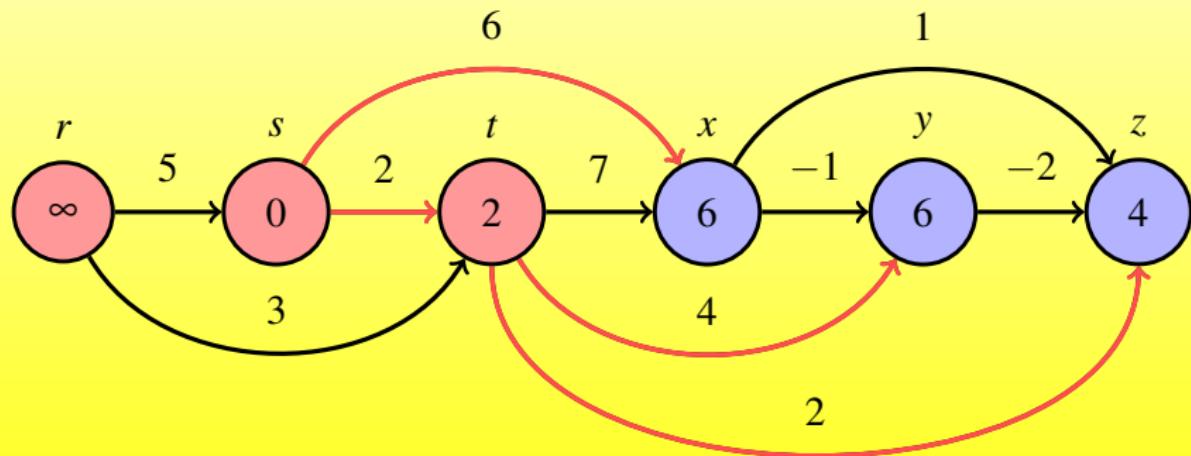
Example



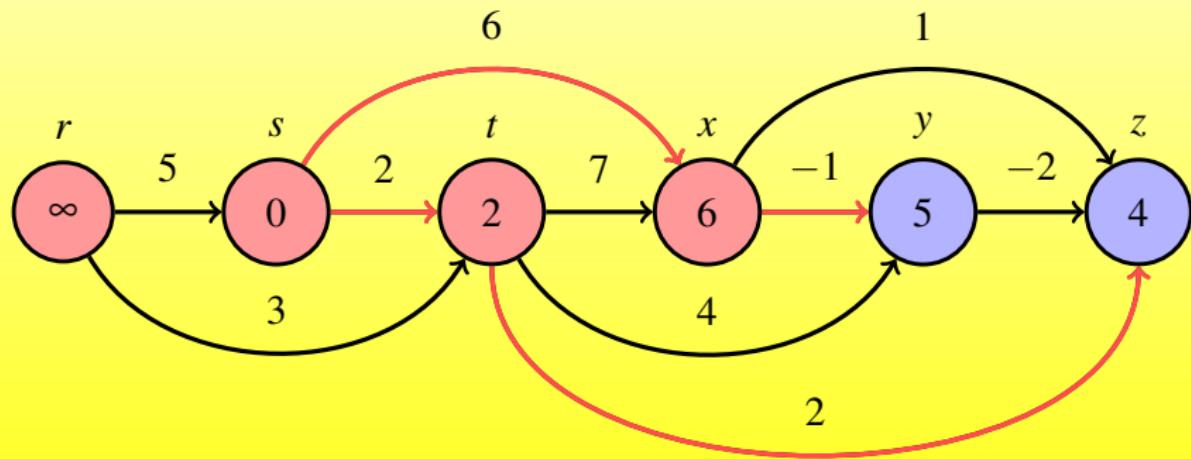
Example



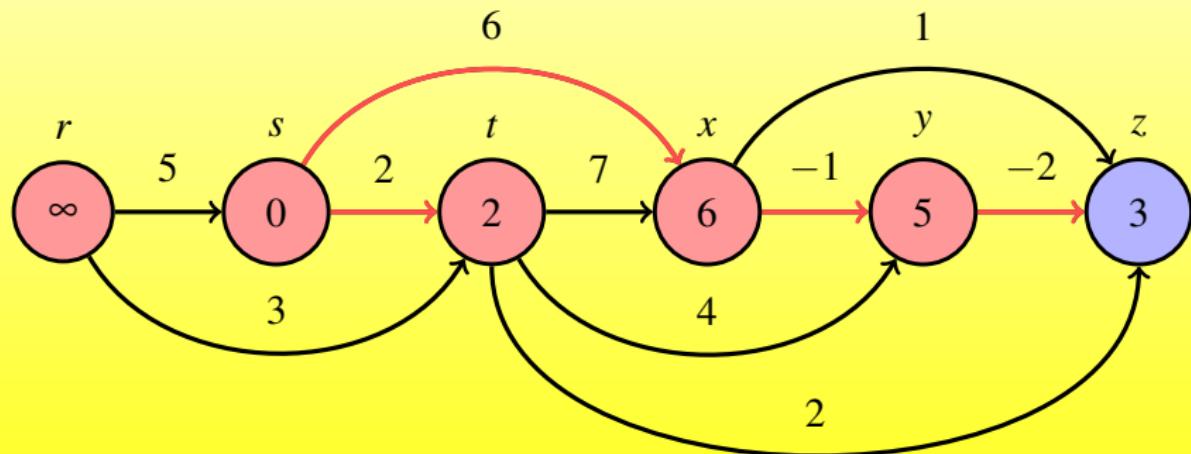
Example



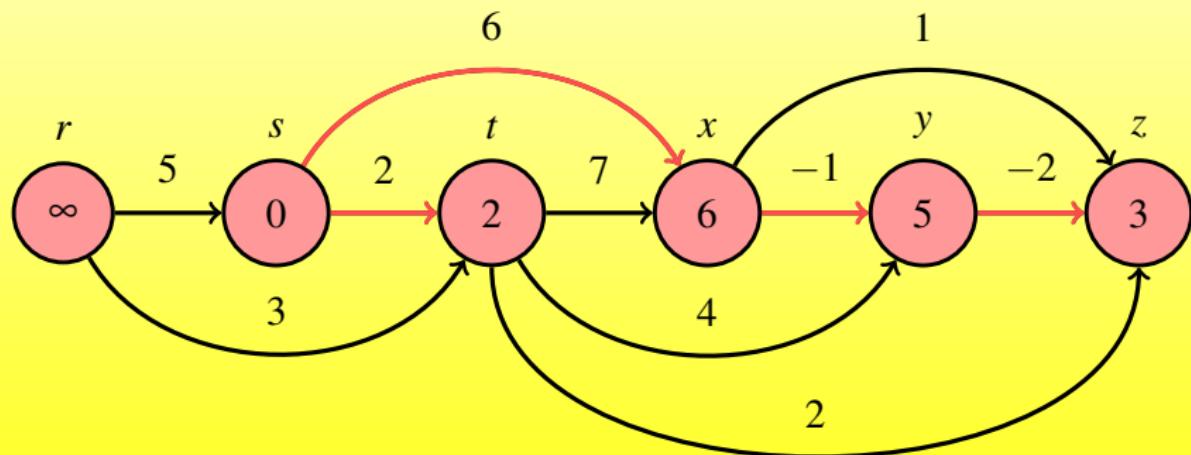
Example



Example



Example



Single-source Shortest Paths in DAGs: Analysis

Correctness?

Time Complexity= $O(V + E)$

DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G, s)
- 3: **for** each vertex u , taken in topologically sorted order **do**
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: RELAX(u, v, w)

Dijkstra's Algorithm

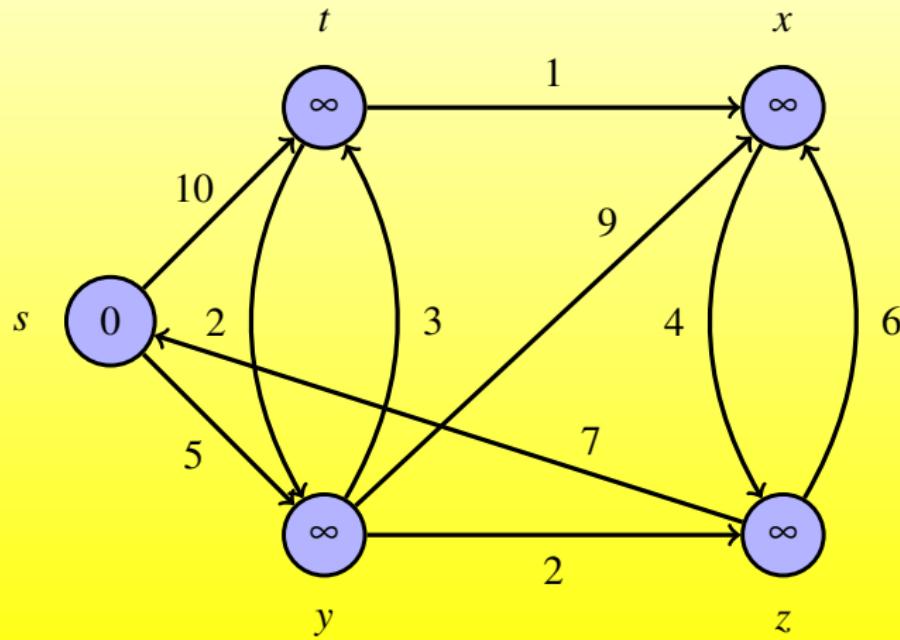
- ▶ If **no negative edge weights**, we can beat BF
- ▶ Similar to breadth-first search
 - ▶ Grow a tree gradually, advancing from vertices taken from a queue
- ▶ Also similar to Prim's algorithm for MST
 - ▶ Use a priority queue keyed on $d[v]$

Dijkstra's Algorithm

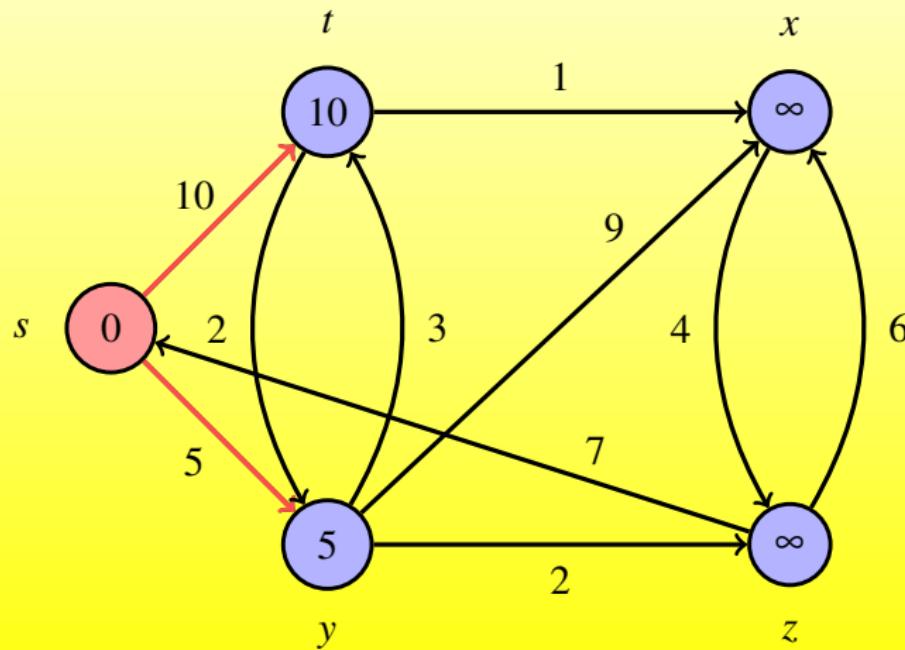
DIJKSTRA(G, w, s)

```
1: INITIAL-SINGLE-SOURCE( $G, s$ )
2:  $S = \emptyset$       // nodes with the shortest distance computed
3:  $Q = G.V$ 
4: while  $Q \neq \emptyset$  do
5:    $u = \text{EXTRACT-MIN}(Q)$ 
6:    $S = S \cup \{u\}$ 
7:   for each vertex  $v \in G.\text{Adj}[u]$  do
8:     RELAX( $u, v, w$ )
```

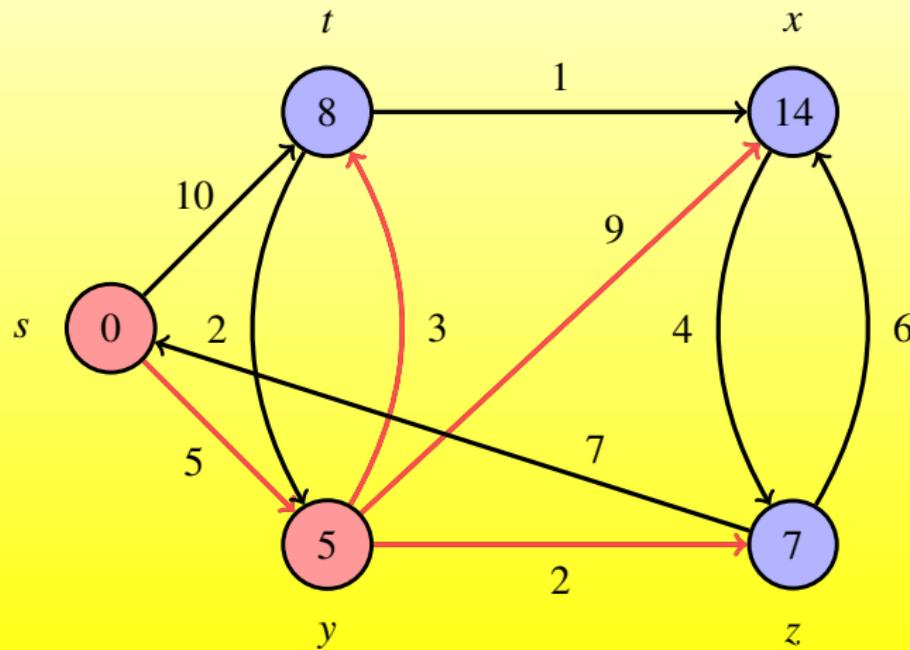
Example



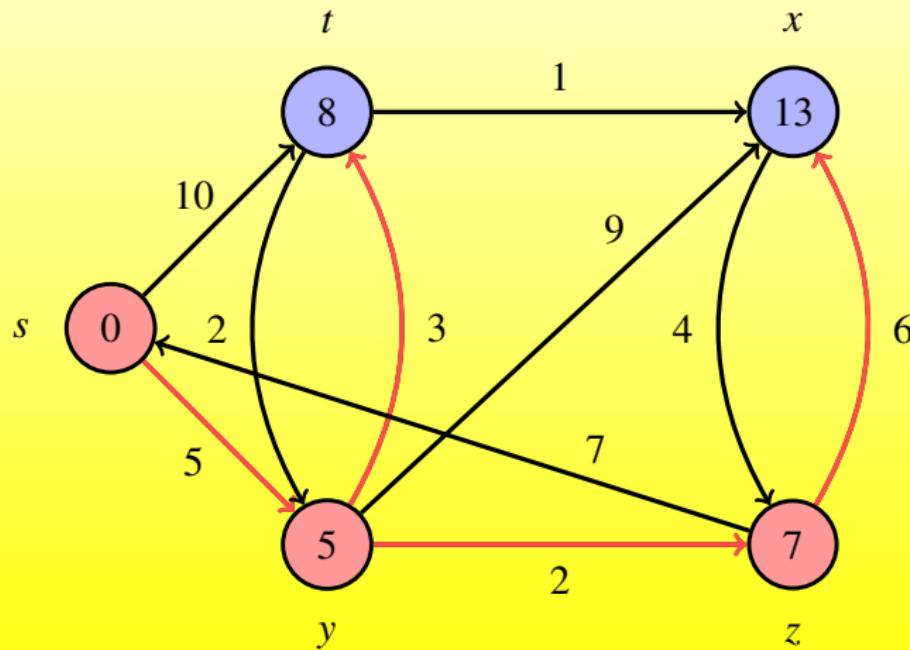
Example



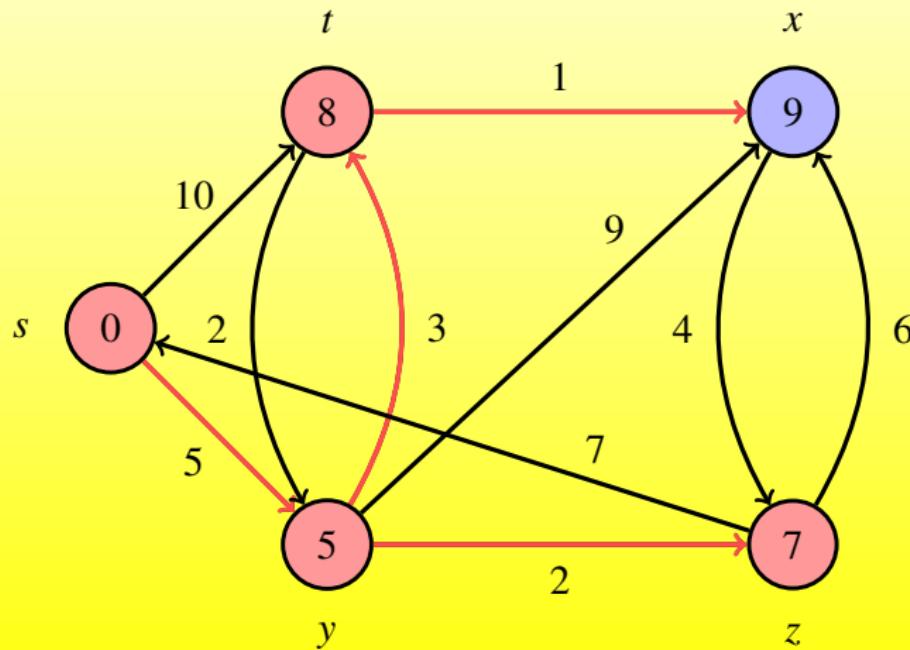
Example



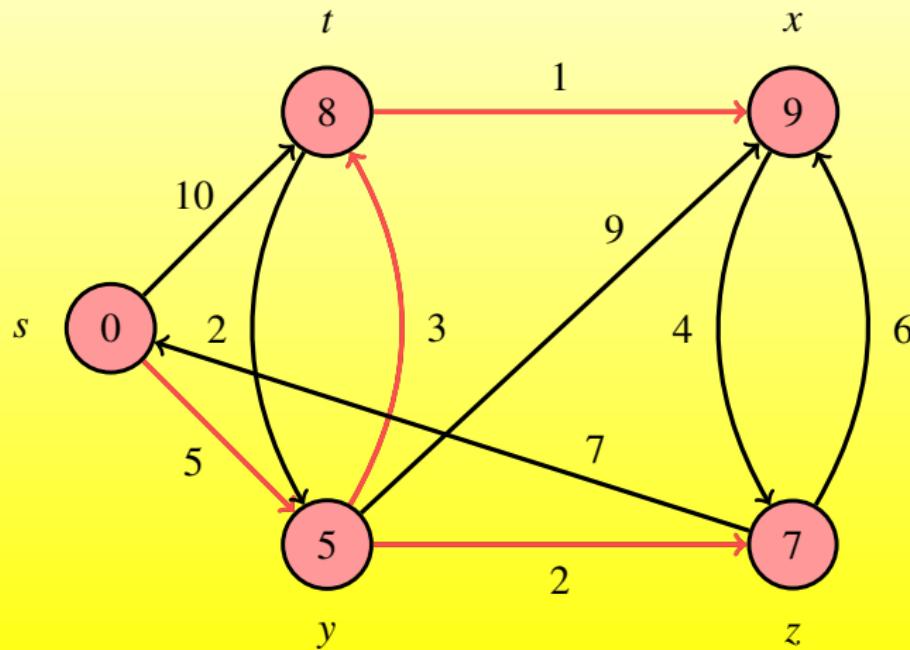
Example



Example



Example



Correctness of Dijkstra's algorithm

Theorem 24.6 (Correctness of Dijkstra's algorithm) Dijkstra's algorithm, run on a weighted, directed graph $G = (V, E)$ with non-negative weight function w and source s , terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

Corollary 24.7 If we run Dijkstra's algorithm on a weighted, directed graph $G = (V, E)$ with non-negative weight function w and source s , then at termination, the predecessor subgraph G_π is a shortest-paths tree rooted at s .

Dijkstra's Algorithm - Time Complexity

Time: $O(E + V \log V)$, by implementing the min-priority queue with a Fibonacci heap.

DIJKSTRA(G, w, s)

- 1: INITIAL-SINGLE-SOURCE(G, s)
- 2: $S = \emptyset$
- 3: $Q = G.V$ *// $|V|$ INSERT (Q)*
- 4: **while** $Q \neq \emptyset$ **do**
- 5: $u = \text{EXTRACT-MIN}(Q)$ *// $|V|$ EXTRACT-MIN(Q)*
- 6: $S = S \cup \{u\}$
- 7: **for** each vertex $v \in G.\text{Adj}[u]$ **do**
- 8: $\text{RELAX}(u, v, w)$ *// $|E|$ DECREASE-KEY(Q)*