Introduction to Algorithms
Chapter 32 : String Matching

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

Outline

Outline of Topics

@ Overview

© The Naive Algorithm : Brute Force
e The Rabin-Karp Algorithm

@ String matching with finite automata

© The Knuth-Morris-Pratt Algorithm

Overview

Table of Contents

@ Overview

Overview

Definition of String Matching Problem

String-matching Problem:
© 1. Find one occurrence of a pattern in a text ;
© 2. Find out all the occurrences of a pattern in a text.

Applications require two kinds of solution depending on which string,
the pattern or the text, is given first.
© 1. Algorithms based on the use of automata or combinatorial
properties of strings are commonly implemented to preprocess
the pattern and solve the first kind of problem.
© 2. The notion of indexes realized by trees or automata is used in
the second kind of solutions.

Overview

String Matching
(*]
(]
(*]
(*]
]
("]
("]
("]
("]

Word processors

Virus scanning

Text information retrieval systems (Lexis, Nexis)
Digital libraries

Natural language processing

Specialized databases

Computational molecular biology

Web search engines

Bioinformatics

An Example of String Matching

text T |a|b|c‘a|b|a|a’b|c|a|b|a‘c|

pattern P =g HEEE

Overview

Notation and Terminology

Parameters
@ T: the text is an array T'[1..n] of length n
@ P: the pattern is an array P[1..m] of length m.
@ n: the length of the text.

e m: the length of the pattern.
Typically, n >> m.

Y : the alphabet.

: suffix. e.g., cca 3 beea

0 (x) = max{k : P 7 x}: suffix function

Overview

The Basic Idea of String Matching

sliding window mechanism

@ 1. Scan the text 7 with a window of the length of m;

o 2. Firstly align the pattern with the left end of the text;

@ 3. Compare the P with the corresponding character of the T

@ 4. Move the window to the right after each successful match or
each mismatch;

@ 5. Repeat steps 3 and 4 until the right end of the window is
beyond the right of the text.

When comparing, the order can be from left to right, right to left, or
even in a specific order.

The Naive Algorithm : Brute Force

Table of Contents

© The Naive Algorithm : Brute Force

The Naive Algorithm : Brute Force

Brute Force

Brute force
Check for pattern starting at every text position, trying to match any
substring of length m in the text with the pattern.
Analysis of brute force:
o running time depends on pattern and text
@ can be slow when strings repeat themselves
@ worst case: O(mn) comparisons

@ too slow when m and n are large.

10/39

The Naive Algorithm : Brute Force

Brute Force

NATIVE-STRING-MATCHING(T, P)

1: n=T.length
2: m= P.length
3: fors=0ton—mdo
4: if P[1..m] == T[s+ 1..s+m] then
5 print “Pattern occurs with shift” s
[ale[alafp[c] [a[c[alalb[c] [a[c[afa]®]c] [a[CWa\T\b[C\
s=0 ala|b s=1 alal|b 5:2 4%:3 alal|b
@) © @

11/39

The Naive Algorithm : Brute Force

Brute Force

Time Complexity: O((n —m+ 1)m). Why is it slow?
NATIVE-STRING-MATCHING(T, P)
1: n=T.length
2: m= P.length
3: fors=0ton—mdo
4: if P[1..m] == T[s+ 1..s+m]| then
5: print “Pattern occurs with shift” s
\T[Cla\a\bhl [alc[afa[p]c] [a[c[afa]p]c] \a[CWa\T\b[C\
s=0 alal|b s=1 alal|b s=2 4”3 alalb
@) © @

12/39

The Rabin-Karp Algorithm

Table of Contents

e The Rabin-Karp Algorithm

13/39

The Rabin-Karp Algorithm

The Basic Idea of Rabin-Karp Algorithm

Basic Idea of Rabin-Karp Algorithm

A string search algorithm which compares a string’s hash values,
rather than the strings themselves. For efficiency, the hash value of the
next position in the text is easily computed from the hash value of the
current position.

o If the hash values are unequal, the algorithm will calculate the
hash value for next M-character sequence.

o If the hash values are equal, the algorithm will compare the
pattern and the M-character sequence.

o In this way, there is only one comparison per text subsequence,
and character matching is only needed when hash values match.

14/39

The Rabin-Karp Algorithm

How Rabin-Karp works

@ An hashing function iash should have the following properties:
o Efficiently computable
o Highly discriminating for strings
o tor1 = hash(T[s+2,...,s+m+ 1]) must be easily computable
from t; = hash(T[s+1,...,s+m]) and T[s + m+ 1]
o hash(T[s+2,...s+m+1]) =
rehash(T[s+1],T[s+m+ 1], hash(T[s+1,...,s+m]))

@ Choosing hash(k) =k mod g, g is a large prime.

15/39

The Rabin-Karp Algorithm

Example of R.K. Algorithm

[2]3]s]ofo]2]3]1]4][1]5]2]e[7]3]9]9]2]1] hlglﬁln:lrdcr Ty
digit digit

mod 13

BOnnep
A —

®
[7]3]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

old new

[2]3]s]ofo 23 141]s]2[6][7]3]9]o]2]1] high-order low-order
digit shift digit
mod 13 \

14152 = (31415 — 3-10000)- 10 + 2 (mod 13)

[8]o]3[ufo]1]7]8]4]5 t0[ti[7]o]11]
@ 33y10+2 (mod 13)

valid spurious
match hit = 8 (mod 13)
() (©)

16/39

The Rabin-Karp Algorithm

How Rabin-Karp works

@ Letd = |) |, define a function ord: ¥ — {0,1,2,....d — 1}

@ For a word w of length m in the text 7, let hash(w) be defined as
follows:

Let: x[i] = ord(w[i]),1 <i<m

hash(w[l..m]) =

(x[1]-d™= ' +x[2] - d™ 2 +--- +x[m] - d°) mod g,where g is a
large number, hash(w[1..m]) is an integer.

hash(w2.m+1]) =

(x[2]-d™ ' +x[3] - d" 2+ +x[m+1]-d°) mod g =
((hash(w[1..m]) —x[1]-d™ ") -d +x[m+1] -d°) mod q.
rehash(a,b,t;) = ((ty —a-h)-d+b) mod g,where d"~! mod ¢
can be calculated in advance and recorded as h.

17/39

The Rabin-Karp Algorithm

Rabin-Karp Algorithm Pseudocode

RK(P,T,d,q)
1: n=T.length, m = P.length, h=d" ! mod g;
2: p=0, to=0;

3: fori=1tomdo /Ipre-processing
4: p=((p-d)+ord(P[i])) mod g /I hash(P[1..m))
5: to = ((tp - d) + ord(T]i])) mod q /I hash(T[1..m])
6: fors=0ton—mdo // matching, (n —m+ 1) times
7: if p==1&& P[1..m] == T[s+ 1..s+ m] then /1 ©(m)
8: print “Pattern occurs with shift” s
9: if s < n—m then // compute #;, 1 based on g
10: ts41 = (ts—ord(T[s+1]) - h) - d + ord(T[s +m+1])) mod ¢

18/39

The Rabin-Karp Algorithm

Rabin-Karp Algorithm Analysis

o The preprocessing phase of the Rabin-Karp algorithm consists in
computing hash(P). It can be done in constant space and O(m)
time.

@ During searching phase, it is enough to compare hash(P) with
hash(T]j.j+m—1]) for 1 <j<n—m+1.

o If an equality is found, it is still necessary to check the equality
P =T|j..j+m— 1] character by character.

@ The time complexity of the Rabin-Karp algorithm is
O((n—m+ 1)m) = ®(mn) (when searching for a” in a” for
instance). Its expected number of text character comparisons is
O(n+m) = O(n), when the valid points are small, e.g., O(1).

19/39

String matching with finite automata

Table of Contents

@ String matching with finite automata

20/39

String matching with finite automata

Finite Automata

Finite Automata

A finite automaton is a quintuple (Q,X,0,s,F):
@ Q: the finite set of states
Y the finite input alphabet
0: the transition function from @ x X to O // deterministic FA
s € Q: the start state

°
°
°
@ F C Q: the set of final (accepting) states

21/39

String matching with finite automata

The Final-State Function

@ A finite automaton M induces a final-state function ¢ : ¥~ — Q
such that ¢ (w) is the state M ends up in after reading the string
w. Thus, M accepts a string w if and only if ¢ (w) € F.

@ We define the function ¢ recursively, using transition function &:

¢(€) = g0
o(wa)=6(¢p(w),a) forweXack

22/39

String matching with finite automata

How it works

A finite automaton accepts strings in
a specific language. It begins in state g
and reads characters one at a time from
the input string. It makes transitions
based on these characters. When it b
reaches the end of the tape, if it is in one ‘@ 1

of the accept states, that string is accepted
by the FA.
e.g., transition function: §(0,a) =1

final-state function: ¢ (ababa) = 1 b

This FA accepts those strings
that end in an odd number of a’s.

a

23/39

String matching with finite automata

The Suffix Function

o(x) = max{k: P, Jx}
In order to properly search for P — abaabc
the string, the program must define

a suffix function (o) which Pr=a
checks to see how much of what it Py =ab

is reading matches the search P3 = aba
string at any given moment. P4 = abaa

Later we will see the

. o (abbaba) =3 //aba
equivalence between ¢ and ©.

Py denotes the prefix of length k
of string P.

24/39

String matching with finite automata

String-Matching Automata

e For any pattern P of length m, we can define its string matching
automata:

0=1{0,....m} (state)

qo =0 (start state)

F={m} (accepting state)
6(g.a) = o(P4a)

25/39

String matching with finite automata

state
0

N o U R W —

input

a b

— == w| =

o TN I o S T o S R

i
T[]
state ¢ (7;)

(.
- -
(IS o N S

w oo W
IS (o7 (IS
“wo W
=~ T o
[N |
A Q
Hﬁb N3
[SIReANN
w e =

0

String matching with finite automata

String-Matching Automata

@ The transition function chooses the next state to maintain the
invariant:

After scanning in i characters, the state number is the longest
prefix of P that is also a suffix of 7;.

27/39

String matching with finite automata

Finite- Automaton-Matcher

@ The simple loop structure
implies a running time for a
string of length n is O(n).

o However: this is only the
running time for the actual
string matching. It does not
include the time it takes to
compute the transition
function.

FINITE- AUTOMATON-MATCHER(T', 8,m)
1: n="T.length
2: g=0
3: fori=1tondo
q= 6(‘17 T[i])
if g==m then
s=i—m
print “Pattern occurs at shift” s

SN CARCAREES

28/39

String matching with finite automata

Computing the Transition Function

COMPUTE-TRANSITION-FUNCTION(P,) o This procedure computes 8(q,a)

1: m= P.length according to its definition. The

2: for g=0tomdo loop on line 2 cycles through all
S OREaSHGatE RS0 the states, while the nested loop
4 k=min(m+1,9+2) .

s. - on line 3 cycles through the

6: k=k—1 alphabet. Thus all state-character
7 until P, 3 Pya combinations are accounted for.
8 5(g.a) =k Lines 4-7 set 8(q,a) to be the

9: return § largest k such that Py 1 P,a.

29/39

String matching with finite automata

Running Time of Compute-Transition-Function

o Running Time: O(m?|X|)
@ Outer loop: m|X|
o Inner loop: runs at most m+ 1

@ P 1 P,a: requires up to m comparisons

30/39

String matching with finite automata

Improving Running Time

@ Much faster procedures for computing the transition function
exist. The time required to compute § based on P can be
improved to O(m|X|)

@ The time it takes to find the string is linear: O(n).
@ This brings the total runtime to:O(n+m|Z|).

@ Not bad if your string is fairly small relative to the text you are
searching in.

31/39

The Knuth-Morris-Pratt Algorithm

Table of Contents

© The Knuth-Morris-Pratt Algorithm

32/39

The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

Basic Idea of KMP

The prefix function 7 encapsulates knowledge about how the pattern
matches against shifts of itself. We take advantage of this information
to avoid testing useless shifts.

33/39

The Knuth-Morris-Pratt Algorithm

An Example of KMP Algorithm

[blafc[p[afp]a]b]afa[b[c[p]a]b] T
[[[[]

4s>|a|b|a‘b‘a|c|a‘P
«~—qg—>

(@

[blafc[plalp[a]b]afa[b[c[p]a]b] T
, []
s:—mﬁa‘b|a|b|a|c|a‘ P

<k —>

34/39

The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

@ The pointer only shift to the right and will not retreat to the left.

e Whentestthe T[s+1,...s+¢+1], P[l..q =T[s+1,...s +¢], but
Plg+ 1] #Tis+q+1].

e Given that pattern characters P[1..q] match text characters
T[s+ 1..s+ ¢, what is the least shift s’ > s such that for some
k<q,P[1.k|=T[s'+ 1..s/ + k|, where s' + k= s+ q?

e Given a pattern P[1..m], the prefix function for the pattern P is
the function 7 : {1,2,...,m} — {0,1,...m — 1} such that
nt[q] = max{k: k < q and P 1 P,}.

35/39

The Knuth-Morris-Pratt Algorithm

An Example of KMP Algorithm

[plafc[p[a[p[a]p[afa[b[c[b]a[b] T i [112]3]4[5]6]7
P[i] |a|b|a|b|a|c|a

[1 []17%
——= >la[b[a[b]a]c]a] P zli] [o]o]1[2]3]01

- q————>

(@

(e[a[c[o]a s [a[B[a[a[o][6]a]5] T i
’ ’ | P, alblalb a c a 2[5]=3

s =s+2 a|b|a|b’a|c{a|P Py Ha‘babaca aBl=1

« k —> P, eiababaca =0

36/39

The Knuth-Morris-Pratt Algorithm

The KMP Algorithm

COMPUTE-PREFIX-FUNCTION(P)
m = P.length
let 7[1..m] be a new array
m[l]=0
k=0
for g =2tomdo
while k£ > 0 and P[k + 1] # P[q] do
k= m[k]
if P[k+ 1] == P[q] then
k=k+1
mlq] =k

"The running

time is @(m)

P2 e R @PNEE

—_ =
= =

: return @

37/39

The Knuth-Morris-Pratt Algorithm

The KMP Algorithm
KMP-MATCHER(T, P)
1: n="T.length
2: m = P.length
3: m = Compute-Prefix-Function(P)
4. q=0 /mumber of characters matched
5: fori=1tondo //scan the text from left to right —_—
6: while g >0and Plg+ 1] # T[i] do The running
7. q= 7] time is ®(n)
8: if P[g+ 1] == T1i] then
9: qg=q+1 //next character matches
10: if ¢ == m then /fis all of P matches
11: print “Pattern occurs with shift” i —m
12: q = 7[q] /Nook for the next match

38/39

The Knuth-Morris-Pratt Algorithm

Summary of KMP

Build 7 from pattern
Run 7 on text

O(m+ n) worst case string search

Good efficiency for patterns and texts with much repetition

o binary files
e graphics formats

Less useful for text strings.

Online algorithm

e virus scanning
o Internet spying

39/39

	Outline
	Overview
	The Naive Algorithm : Brute Force
	The Rabin-Karp Algorithm
	String matching with finite automata
	The Knuth-Morris-Pratt Algorithm

