

Introduction to Algorithms

Topic 9-2 : Approximation Basics

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

Outline

1 Approximation Basics

- History
- NP Optimization
- Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

History of Approximation

1966 **Graham:** First analyzed algorithms by approximation ratio

1971 **Cook:** Gave the concepts of NP-Completeness

1972 **Karp:** Introduced plenty NP-Hard combinatorial optimization problems

1970's Approximation became a popular research area

1979 **Garey & Johnson:** Computers and Intractability: A guide to the Theory of NP-Completeness

NP Optimization Problem

An NP Optimization Problem P is a four tuple $(I, sol, m, goal)$
s.t.

- I is the set of the instances of P and is recognizable in polynomial time
- Given an instance x of I , $sol(x)$ is the set of short feasible solutions of x and $\forall x$ and $\forall y$ such that $|y| \leq p(|x|)$, it is decidable in polynomial time whether $y \in sol(x)$.
- Given an instance x and a feasible solution y of x , $m(x, y)$ is a polynomial time computable measure function providing a positive integer which is the value of y .
- $goal \in \{max, min\}$ denotes maximization or minimization.

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph $G = (V, E)$, the **Minimum Vertex Cover** problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node subset $U \subseteq V$ such that, for each edge $(v_i, v_j) \in E$, either $v_i \in U$ or $v_j \in U$.

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph $G = (V, E)$, the **Minimum Vertex Cover** problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node. subset $U \subseteq V$ such that, for each edge $(v_i, v_j) \in E$, either $v_i \in U$ or $v_j \in U$.

Justification \rightarrow MVC is an NP Optimization Problem

- $I = \{G = (V, E) | G \text{ is a graph}\}$; poly-time decidable
- $sol(G) = \{U \subseteq V | \forall (v_i, v_j) \in E [v_i \in U \vee v_j \in U]\}$;
short feasible solution set and poly-time decidable
- $m(G, U) = |U|$; poly-time computable function
- $goal = \min.$

NPO Class

Definition: (NPO Class)

The class **NPO** is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)

The goal of an NPO problem with respect to an instance x is to find an optimum solution, that is, a feasible solution y such that

$$m(x, y) = \text{goal}\{m(x, y') : y' \in \text{sol}(x)\}.$$

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem $P = (I, sol, m, goal)$, an algorithm A is an approximation algorithm for P if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

What is Approximation Algorithm

Definition: Approximation Algorithm

Given an NP optimization problem $P = (I, sol, m, goal)$, an algorithm A is an approximation algorithm for P if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

Note:

- Guaranteed quality is the difference between approximation and heuristics.
- Approximation for PO, NPO and NP-hard Optimization.
- Decision, Optimization, and Constructive Problems.

r -Approximation

Definition: Approximation Ratio

Let P be an NPO problem. Given an instance x and a feasible solution y of x , we define the performance ratio of y with respect to x , we define the performance ratio of y with respect to x as

$$R(x, y) = \max\left\{\frac{m(x, y)}{opt(x)}, \frac{opt(x)}{m(x, y)}\right\}$$

Definition: r -Approximation

Given an optimization problem P and an approximation algorithm A for P , A is said to be an r -approximation for P if, given any input instance x of P , the performance ratio of the approximate solution $A(x)$ is bounded by r , say, $R(x, A(x)) \leq r$.

APX Class

Definition: F-APX

Given a class of functions F , an NPO problem P belongs to the class **F-APX** if an r -approximation polynomial time algorithm A for P exists, for some function $r \in F$.

Example:

- F is constant functions $\rightarrow P \in APX$.
- F is $O(\log n)$ functions $\rightarrow P \in \log-APX$.
- F is $O(n^k)$ functions (polynomials) $\rightarrow P \in poly-APX$.
- F is $O(2^{n^k})$ functions $\rightarrow P \in exp-APX$.

Special Case

Definition: Polynomial Time Approximation Scheme → PTAS

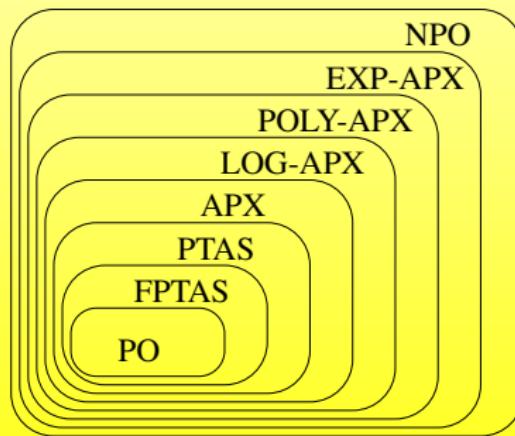
An NPO problem P belongs to the class **PTAS** if an algorithm A exists such that, for any rational value $\varepsilon > 0$, when applied A to input (x, ε) , it returns an $(1 + \varepsilon)$ —approximate solution of x in time polynomial in $|x|$.

Definition: Fully PTAS → FPTAS

An NPO problem P belongs to the class **FPTAS** if an algorithm A exists such that, for any rational value $\varepsilon > 0$, when applied A to input (x, ε) , it returns an $(1 + \varepsilon)$ —approximate solution of x in time polynomial both in $|x|$ and in $\frac{1}{\varepsilon}$.

Approximation Class Inclusion

If $P \neq NP$, then $FPTAS \subseteq PTAS \subseteq APX \subseteq Log-APX \subseteq Poly-APX \subseteq Exp-APX \subseteq NPO$



- Constant-Factor Approximation (APX)
 - Reduce App. Ratio
 - Reduce Time Complexity
- PTAS $((1 + \varepsilon) - Appx)$
 - Test Existence
 - Reduce Time Complexity

Outline

1 Approximation Basics

- History
- NP Optimization
- Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

Vertex Cover Problem

Problem

Vertex Cover: A vertex cover of a graph G is a set of vertices, V_c , such that every edge in G has at least one of vertex in V_c as an endpoint.

Instance: Given an undirected graph $G = (V, E)$.

Objective: To find a minimum-size vertex cover in a given graph G .

Solution: A subset $V' \subseteq V$ that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both)

Measure: The size which is the number of vertices in it.

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)

- 1: $C = \emptyset$
- 2: $E' = G.E$
- 3: **while** $E' \neq \emptyset$ **do**
- 4: Let (u, v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either u or v
- 7: **return** C

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected graph G and returns a vertex cover whose size is guaranteed to be no more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)

- 1: $C = \emptyset$
- 2: $E' = G.E$
- 3: **while** $E' \neq \emptyset$ **do**
- 4: Let (u, v) be an arbitrary edge of E'
- 5: $C = C \cup \{u, v\}$
- 6: remove from E' every edge incident on either u or v
- 7: **return** C

Approximation Ratio?

Outline

1 Approximation Basics

- History
- NP Optimization
- Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

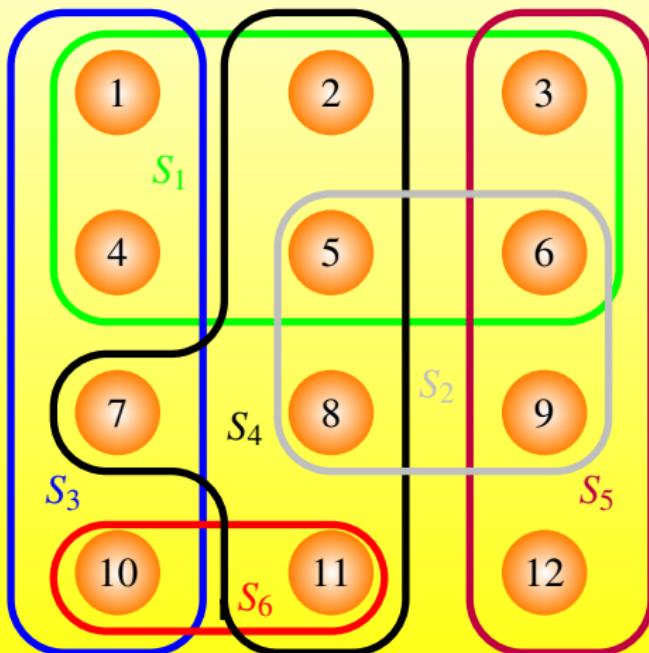
Set Cover Problem

Problem

Instance: Given a finite set X and a family \mathcal{F} of subsets of X , such that every element of X belongs to at least one subset in \mathcal{F} : $X = \bigcup_{S \in \mathcal{F}} S$.

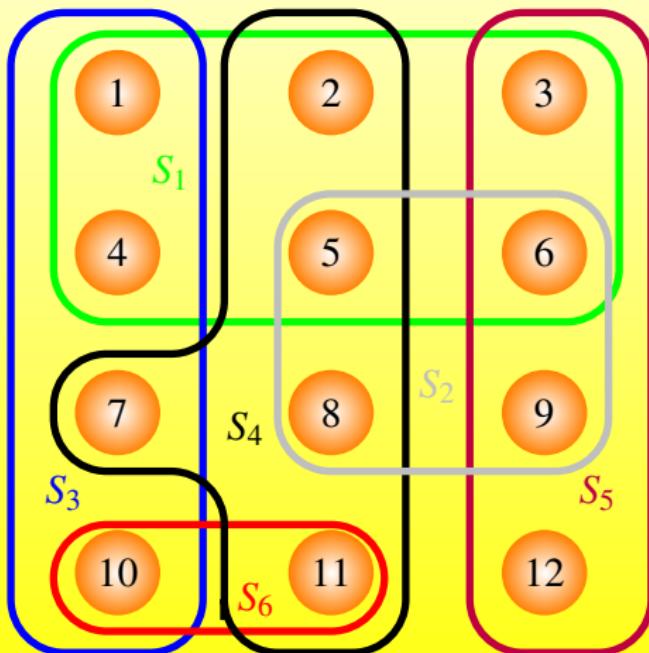
Problem: Find a minimum-size subset $\mathcal{L} \subseteq \mathcal{F}$ whose members cover all of X : $X = \bigcup_{S \in \mathcal{L}} S$.

An Example



$$\begin{aligned}U &= \{1, 2, \dots, 12\} \\ \mathbf{S} &= \{S_1, S_2, \dots, S_6\} \\ S_1 &= \{1, 2, 3, 4, 5, 6\} \\ S_2 &= \{5, 6, 8, 9\} \\ S_3 &= \{1, 4, 7, 10\} \\ S_4 &= \{2, 5, 7, 8, 11\} \\ S_5 &= \{3, 6, 9, 12\} \\ S_6 &= \{10, 11\}\end{aligned}$$

An Example



$$\begin{aligned}U &= \{1, 2, \dots, 12\} \\ \mathbf{S} &= \{S_1, S_2, \dots, S_6\} \\ S_1 &= \{1, 2, 3, 4, 5, 6\} \\ S_2 &= \{5, 6, 8, 9\} \\ S_3 &= \{1, 4, 7, 10\} \\ S_4 &= \{2, 5, 7, 8, 11\} \\ S_5 &= \{3, 6, 9, 12\} \\ S_6 &= \{10, 11\}\end{aligned}$$

Optimal Solution :
 $\mathbf{S}' = \{S_3, S_4, S_5\}$

Greedy Algorithm

GREEDY-SET-COVER(X, \mathcal{F})

- 1: $U = X$
- 2: $\mathcal{L} \leftarrow \emptyset$
- 3: **while** $U \neq \emptyset$ **do**
- 4: select an $S \in \mathcal{F}$ that maximizes $|S \cap U|$.
- 5: $U = U - S$.
- 6: $\mathcal{L} = \mathcal{L} \cup \{S\}$
- 7: **return** \mathcal{L} .

Analysis

Theorem 1

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathcal{F}\})$. (We denote the d th harmonic number $H_d = \sum_{i=1}^d 1/i$ by $H(d)$.)

Analysis

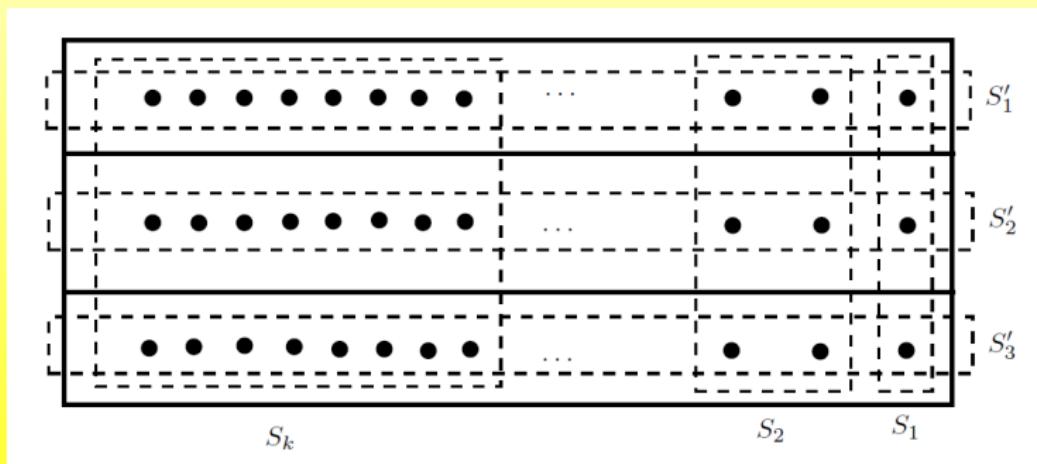
Theorem 1

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -approximation algorithm, where $\rho(n) = H(\max\{|S| : S \in \mathcal{F}\})$. (We denote the d th harmonic number $H_d = \sum_{i=1}^d 1/i$ by $H(d)$.)

Corollary 2

Greedy-Set-Cover is a polynomial-time $(\ln |X| + 1)$ -approximation algorithm.

Greedy Performs Badly



Outline

1 Approximation Basics

- History
- NP Optimization
- Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

Knapsack

Problem

Instance: Given a set of n items, each with profit p_i and size s_i , and a knapsack with size bound B ($B > s_i$).

Solution: A subset of items $S \subset [n]$ that subject to the constraint $\sum_{i \in S} s_i \leq B$.

Measure: Total profit of the chosen subset, $\sum_{i \in S} p_i$.

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
2. Greedily pick items in above order.

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size B and profit B

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
2. Greedily pick items in above order.

Consider the following input:

- An item with size 1 and profit 2
- An item with size B and profit B

Our greedy algorithm will only pick the small item, making this a **pretty bad** approximation algorithm

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
2. Greedily add items until we hit an item a_i that is too big.
 $(\sum_{k=1}^i s_i > B)$
3. Pick the better of $\{a_1, a_2, \dots, a_{i-1}\}$ and a_i .

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of $\frac{P_i}{S_i}$
2. Greedily add items until we hit an item a_i that is too big.
 $(\sum_{k=1}^i s_i > B)$
3. Pick the better of $\{a_1, a_2, \dots, a_{i-1}\}$ and a_i .

Greedy Algorithm Redux is a **2 -approximation** for the knapsack problem.

Actually, we can achieve $(1 + \varepsilon)$ -approximation for any $\varepsilon > 0$ based on Dynamic Programming.