
Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Introduction to Algorithms
Topic 9-2 : Approximation Basics

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology
University of Science and Technology of China (USTC)

Fall Semester 2025

1 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

Outline

1 Approximation Basics
History
NP Optimization
Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

2 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

History of Approximation

1966 Graham: First analyzed algorithms by approximation
ratio

1971 Cook: Gave the concepts of NP-Completeness

1972 Karp: Introduced plenty NP-Hard combinatorial opti-
mization problems

1970’s Approximation became a popular research area

1979 Garey & Johnson: Computers and Intractability: A
guide to the Theory of NP-Completeness

3 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

NP Optimization Problem

An NP Optimization Problem P is a four tuple (I,sol,m,goal)
s.t.

I is the set of the instances of P and is recognizable in
polynomial time

Given an instance x of I, sol(x) is the set of short feasible
solutions of x and ∀x and ∀y such that |y| ≤ p(|x|), it is decidable
in polynomial time whether y ∈ sol(x).

Given an instance x and a feasible solution y of x, m(x,y) is a
polynomial time computable measure function providing a
positive integer which is the value of y.

goal ∈ {max,min} denotes maximization or minimization.

4 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover
Given a graph G = (V,E), the Minimum Vertex Cover problem
(MVC) is to find a vertex cover of minimum size, that is, a minimum
node subset U ⊆ V such that, for each edge (vi,vj) ∈ E, either vi ∈ U
or vj ∈ U.

5 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

An Example of NP Optimization Problem

Example: Minimum Vertex Cover
Given a graph G = (V,E), the Minimum Vertex Cover problem

(MVC) is to find a vertex cover of minimum size, that is, a minimum
node. subset U ⊆ V such that, for each edge (vi,vj) ∈ E, either vi ∈ U
or vj ∈ U.

Justification→MVC is an NP Optimization Problem
I = {G = (V,E)|Gisagraph}; poly-time decidable

sol(G) = {U ⊆ V|∀(vi,vj) ∈ E[vi ∈ U∨ vj ∈ U]};
short feasible solution set and poly-time decidable

m(G,U) = |U|; poly-time computable function

goal = min.

6 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

NPO Class

Definition: (NPO Class)
The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)
The goal of an NPO problem with respect to an instance x is to find an
optimum solution, that is, a feasible solution y such that
m(x,y) = goal{m(x,y′) : y′ ∈ sol(x)}.

7 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm
Given an NP optimization problem P = (I,sol,m,goal), an

algorithm A is an approximation algorithm for P if, for any given
instance x ∈ I, it returns an approximate solution, that is a feasible
solution A(x) ∈ sol(x) with guaranteed quality.

8 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

What is Approximation Algorithm

Definition: Approximation Algorithm
Given an NP optimization problem P = (I,sol,m,goal), an

algorithm A is an approximation algorithm for P if, for any given
instance x ∈ I, it returns an approximate solution, that is a feasible
solution A(x) ∈ sol(x) with guaranteed quality.

Note:

Guaranteed quality is the difference between approximation and
heuristics.

Approximation for PO, NPO and NP-hard Optimization.

Decision, Optimization, and Constructive Problems.

9 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

r−Approximation

Definition: Approximation Ratio
Let P be an NPO problem. Given an instance x and a feasible

solution y of x, we define the performance ratio of y with respect to x,
we define the performance ratio of y with respect to x as

R(x,y) = max{m(x,y)
opt(x)

,
opt(x)
m(x,y)

}

Definition: r−Approximation
Given an optimization problem P and an approximation algorithm

A for P, A is said to be an r−approximation for P if, given any input
instance x of P, the performance ratio of the approximate solution
A(x) is bounded by r, say, R(x,A(x))≤ r.

10 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

APX Class

Definition: F-APX
Given a class of functions F, an NPO problem P belongs to the

class F-APX if an r−approximation polynomial time algorithm A for
P exists, for some function r ∈ F.

Example:
F is constant functions→ P ∈ APX.

F is O(logn) functions→ P ∈ log−APX.

F is O(nk) functions (polynomials)→ p ∈ poly−APX.

F is O(2nk
) functions→ P ∈ exp−APX.

11 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

Special Case

Definition: Polynomial Time Approximation Scheme→ PTAS
An NPO problem P belongs to the class PTAS if an algorithm A

exists such that, for any rational value ε > 0, when applied A to input
(x,ε), it returns an (1+ ε)−approximate solution of x in time
polynomial in |x|.

Definition: Fully PTAS→ FPTAS
An NPO problem P belongs to the class FPTAS if an algorithm A

exists such that, for any rational value ε > 0, when applied A to input
(x,ε), it returns an (1+ ε)−approximate solution of x in time
polynomial both in |x| and in 1

ε
.

12 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

History
NP Optimization
Definition of Approximation

Approximation Class Inclusion

If P ̸= NP, then FPTAS⊆ PTAS⊆ APX ⊆ Log−APX ⊆
Poly−APX ⊆ Exp−APX ⊆ NPO

NPO
EXP-APX

POLY-APX
LOG-APX

APX
PTAS

FPTAS

PO

Constant-Factor
Approximation (APX)

Reduce App. Ratio
Reduce Time Complexity

PTAS ((1+ ε)−Appx)
Test Existence
Reduce Time Complexity

13 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Outline

1 Approximation Basics
History
NP Optimization
Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

14 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Vertex Cover Problem

Problem
Vertex Cover: A vertex cover of a graph G is a set of vertices, Vc,
such that every edge in G has at least one of vertex in Vc as an
endpoint.
Instance: Given an undirected graph G = (V,E).
Objective: To find a minimum-size vertex cover in a given graph G.
Solution: A subset V ′ ⊆ V that if (u,v) ∈ E, then u ∈ V ′ or v ∈ V ′ (or
both)
Measure: The size which is the number of vertices in it.

15 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected
graph G and returns a vertex cover whose size is guaranteed to be no
more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)
1: C =∅
2: E′ = G.E
3: while E′ ̸=∅ do
4: Let(u,v) be an arbitrary edge of E′

5: C = C∪{u,v}
6: remove from E′ every edge incident on either u or v
7: return C

16 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Approximate Vertex-Cover

The following approximation algorithm takes as input an undirected
graph G and returns a vertex cover whose size is guaranteed to be no
more than twice the size of an optimal vertex cover.

APPROX-VERTEX-COVER(G)
1: C =∅
2: E′ = G.E
3: while E′ ̸=∅ do
4: Let(u,v) be an arbitrary edge of E′

5: C = C∪{u,v}
6: remove from E′ every edge incident on either u or v
7: return C

Approximation Ratio?

17 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Outline

1 Approximation Basics
History
NP Optimization
Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

18 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Set Cover Problem

Problem
Instance: Given a finite set X and a family F of subsets of X, such
that every element of X belongs to at least one subset in
F : X =

⋃
S∈F S.

Problem: Find a minimum-size subset L ⊆F whose members
cover all of X: X =

⋃
S∈L S.

19 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

An Example

1

4

7

10

2

5

8

11

3

6

9

12

S1

S3

S6

S5

S4

S2

U = {1,2, ...,12}
S = {S1,S2, ...,S6}
S1 = {1,2,3,4,5,6}
S2 = {5,6,8,9}
S3 = {1,4,7,10}
S4 = {2,5,7,8,11}
S5 = {3,6,9,12}
S6 = {10,11}

20 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

An Example

1

4

7

10

2

5

8

11

3

6

9

12

S1

S3

S6

S5

S4

S2

U = {1,2, ...,12}
S = {S1,S2, ...,S6}
S1 = {1,2,3,4,5,6}
S2 = {5,6,8,9}
S3 = {1,4,7,10}
S4 = {2,5,7,8,11}
S5 = {3,6,9,12}
S6 = {10,11}

OptimalSolution :
S’ = {S3,S4,S5}

21 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

GREEDY-SET-COVER(X,F)
1: U = X
2: L ← /0
3: while U ̸= /0 do
4: select an S ∈F that maximizes |S∩U|.
5: U = U−S.
6: L = L ∪{S}
7: return L .

22 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Analysis

Theorem 1
Greedy-Set-Cover is a polynomial-time ρ(n)−approximation
algorithm, where ρ(n) = H(max{|S| : S ∈F}). (We denote the dth
harmonic number Hd = ∑

d
i=1 1/i by H(d).)

Corollary 2

Greedy-Set-Cover is a polynomial-time (ln |X|+1)-approximation
algorithm.

23 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Analysis

Theorem 1
Greedy-Set-Cover is a polynomial-time ρ(n)−approximation
algorithm, where ρ(n) = H(max{|S| : S ∈F}). (We denote the dth
harmonic number Hd = ∑

d
i=1 1/i by H(d).)

Corollary 2

Greedy-Set-Cover is a polynomial-time (ln |X|+1)-approximation
algorithm.

23 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Performs Badly

24 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Outline

1 Approximation Basics
History
NP Optimization
Definition of Approximation

2 The vertex-cover problem

3 The set cover problem

4 Knapsack

25 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Knapsack

Problem
Instance: Given a set of n items, each with profit pi and size si, and a
knapsack with size bound B(B > si).
Solution: A subset of items S⊂ [n] that subject to the constraint
∑i∈S si ≤ B.
Measure: Total profit of the chosen subset, ∑i∈S pi.

26 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of Pi
Si

2. Greedily pick items in above order.

Consider the following input:

An item with size 1 and profit 2

An item with size B and profit B

Our greedy algorithm will
only pick the small item,
making this a pretty bad
approximation algorithm

27 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of Pi
Si

2. Greedily pick items in above order.

Consider the following input:

An item with size 1 and profit 2

An item with size B and profit B

Our greedy algorithm will
only pick the small item,
making this a pretty bad
approximation algorithm

27 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

Greedy Algorithm?

1. Sort items in non-increasing order of Pi
Si

2. Greedily pick items in above order.

Consider the following input:

An item with size 1 and profit 2

An item with size B and profit B

Our greedy algorithm will
only pick the small item,
making this a pretty bad
approximation algorithm

27 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of Pi
Si

2. Greedily add items until we hit an item ai that is too big.
(∑i

k=1 si > B)

3. Pick the better of {a1,a2, ...,ai−1} and ai.

Greedy Algorithm Redux is a 2−approximation for the knapsack
problem.
Actually, we can achieve (1+ ε)-approximation for any ε > 0 based
on Dynamic Programming.

28 / 28

Approximation Basics
The vertex-cover problem

The set cover problem
Knapsack

Greedy Algorithm

Greedy Algorithm Redux

1. Sort items in non-increasing order of Pi
Si

2. Greedily add items until we hit an item ai that is too big.
(∑i

k=1 si > B)

3. Pick the better of {a1,a2, ...,ai−1} and ai.

Greedy Algorithm Redux is a 2−approximation for the knapsack
problem.
Actually, we can achieve (1+ ε)-approximation for any ε > 0 based
on Dynamic Programming.

28 / 28

	Approximation Basics
	History
	NP Optimization
	Definition of Approximation

	The vertex-cover problem
	The set cover problem
	Knapsack

